67 research outputs found

    Imaging along-strike variations in mechanical properties of the Gofar transform fault, East Pacific Rise

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 119 (2014): 7175–7194, doi:10.1002/2014JB011270.A large part of global plate motion on mid-ocean ridge transform faults (RTFs) is not accommodated as major earthquakes. When large earthquakes do occur, they often repeat quasiperiodically. We focus here on the high slip rate (∼14 cm/yr) Gofar transform fault on the equatorial East Pacific Rise. This fault is subdivided into patches that slip during Mw 5.5–6 earthquakes every 5 to 6 years. These patches are separated by rupture barriers that accommodate slip through swarms of smaller events and/or aseismic creep. We performed an imaging study to investigate which spatiotemporal variations of the fault zone properties control this segmentation in mechanical behavior and could explain the specific behavior of RTFs at the global scale. We adopt a double-difference approach in a joint inversion of active air gun shots and microseismicity recorded for 1 year. This data set includes the 2008 Mw 6 Gofar earthquake. The along-strike P wave velocity structure reveals an abrupt transition between the barrier area, characterized by a damaged fault zone of 10–20% reduced Vp and a nearly intact fault zone in the asperity area. The importance of the strength of the damage zone on the mechanical behavior is supported by the temporal S wave velocity changes which suggest increased damage within the barrier area, during the week preceding the Mw 6 earthquake. Our results support the conclusion that extended highly damaged zones are the key factor in limiting the role of major earthquakes to accommodate plate motion along RTFs.The material presented here is based on work supported by the National Science Foundation grants 1232725 and 0242117.2015-03-2

    Controllable transport mean free path of light in xerogel matrixes embedded with polystyrene spheres

    Get PDF
    Xerogel matrices, made by sol-gel techniques, are embedded with polystyrene spheres to promote multiple scattering of light. Varying the concentration of the spheres inside the matrix allows one to adjust the transport mean free path of light inside the material. Coherent backscattering measurements show that a range of transport mean free paths from 90 to 600 nm is easily achieved. The determination of the matrix refractive index permits a direct comparison to multiple scattering and Mie theory. Such tunable diffusive sol-gel derived samples can be further optimized as random laser materials.Comment: Updated figures and correcting typos. 5 pages, 3 figure

    Phase–velocity dispersion curves and small-scale geophysics using noise correlation slantstack technique

    No full text
    International audienceIt has been demonstrated both theoretically and experimentally that the Green's function between two receivers can be retrieved from the cross-correlation of isotropic noise records. Since surface waves dominate noise records in geophysics, tomographic inversion using noise correlation techniques have been performed from Rayleigh waves so far. However, very few numerical studies implying surface waves have been conducted to confirm the extraction of the true dispersion curves from noise correlation in a complicated soil structure. In this paper, synthetic noise has been generated in a small-scale (<1 km) numerical realistic environment and classical processing techniques are applied to retrieve the phase velocity dispersion curves, first step toward an inversion. We compare results obtained from spatial autocorrelation method (SPAC), high-resolution frequency-wavenumber method (HRFK) and noise correlation slantstack techniques on a 10-sensor array. Two cases are presented in the (1–20 Hz) frequency band that corresponds to an isotropic or a directional noise wavefield. Results show that noise correlation slantstack provides very accurate phase velocity estimates of Rayleigh waves within a wider frequency band than classical techniques and is also suitable for accurately retrieving Love waves dispersion curves

    An acoustic technique for investigating the sol–gel transition

    No full text
    International audienc

    Acoustic resonance tracking in sol gel materials

    No full text
    International audienc
    • …
    corecore