153 research outputs found

    Atomic environment and interfacial structural order of TiAlN/Mo multilayers

    Get PDF
    Multilayered TiAlN/Mo coatings were deposited by dc reactive magnetron sputtering in a custom-made chamber. In order to assess the composition of these coatings, a combined study of Extended X-ray Absorption Fine Structure (EXAFS) and Rutherford Backscattering Spectrometry (RBS) experiments were performed. Through the simulation of the EXAFS spectra, giving the local environment of the titanium atoms inside the nitride (TiAlN), a cubic phase has been evidenced with aluminium atoms occupying titanium sites. For modulation periods in the range of 3.6–11.8 nm, RBS simulations on these multilayers also enabled the determination of the level of intermixing that occurs at the interfaces as a function of the negative bias voltage and number of layers. It was observed that the intermixing width could be as high as 2.1 nm for the roughest samples (larger periods) or as low as 0.4 nm for those with the sharpest interfaces (smaller periods).Comunidade Europeia (CE). Fundo Europeu de Desenvolvimento Regional (FEDER) -Ministério da Ciência e Tecnologia.Cooperação Científica e Tecnológica Internacional (ICCTI) - Ambassade de France in Portugal - Project no. 543 B3/2001.Fundação para a Ciência e a Tecnologia (FCT) - Programa Operacional “Ciência, Tecnologia, Inovação - POCTI/32670/CTM/2000

    A Genetic Screen Identifies New Steps In Oocyte Maturation That Enhance Proteostasis In The Immortal Germ Lineage

    Get PDF
    Somatic cells age and die, but the germ-cell lineage is immortal. In Caenorhabditis elegans, germline immortality involves proteostasis renewal at the beginning of each new generation, when oocyte maturation signals from sperm trigger the clearance of carbonylated proteins and protein aggregates. Here, we explore the cell biology of this proteostasis renewal in the context of a whole-genome RNAi screen. Oocyte maturation signals are known to trigger protein-aggregate removal via lysosome acidification. Our findings suggest that lysosomes are acidified as a consequence of changes in endoplasmic reticulum activity that permit assembly of the lysosomal V-ATPase, which in turn allows lysosomes to clear the aggregates via microautophagy. We define two functions for mitochondria, both of which appear to be independent of ATP generation. Many genes from the screen also regulate lysosome acidification and age-dependent protein aggregation in the soma, suggesting a fundamental mechanistic link between proteostasis renewal in the germline and somatic longevity

    Structural evolution in ZrNxOy thin films as a function of temperature

    Get PDF
    Single-layered zirconium oxynitride (ZrNxOy) thin films have been deposited on steel substrates, at a constant temperature of 300 °C, by radiofrequency (rf) reactive magnetron sputtering of a pure Zr target in an argon-oxygen-nitrogen atmosphere. The variation of the flow rate of the reactive gases enabled changes in the composition and structure of the films. X-ray diffraction (XRD) and glancing incidence X-ray diffraction (GIXRD) were used to study the as-deposited films and their structural changes during or after heat treatment, from 400 to 900 °C, in controlled atmosphere and in vacuum.http://www.sciencedirect.com/science/article/B6TVV-4DPYN97-6/1/3785b40b130ad12af7221c230d2968c

    Corrosion behaviour of single layered ZrNxOy thin films in artificial sweat solutions

    Get PDF
    Applications of coloured thin films can be found on the production of high-quality consumer products, such as eyeglass frames, wristwatch casings and wristbands. These components should possess scratch and corrosion resistant surfaces through the desired lifetime. Recently, metal oxynitrides, MeNxOy (Me = early transition metal) were proposed for decorative applications. In these materials, variations on the amount of oxygen allow the film properties to be tailored, originating a wide range of colours. Additionally, these materials should also fulfil the wear and corrosion requirements above referred. In the present work the corrosion behaviour of single layered zirconium oxynitride, ZrNxOy films, immersed in artificial sweat solutions, is described. Films were produced by rf reactive magnetron sputtering at a constant substrate temperature of 300 ºC, from a pure Zr target. The main processing variable was the flow rate of reactive. The corrosion resistance was evaluated by potentiodynamic polarisation tests and Electrochemical Impedance Spectroscopy (EIS) at different immersion times, at room temperature. The corrosion resistance of the films is strongly affected by the O/N ratio. A slight tendency to improving the corrosion resistance of the films was found with the increasing in the atomic fraction of oxygen. Nevertheless, pitting was found in all samples. However, the amount of pits seems to be strongly dependent not only on the composition of the film, but also on the processing-induced defects distribution.European Union, FCT- Portugal and European community (FEDER)

    Tribocorrosion behaviour of zrNxOy thin films for decorative applications

    Get PDF
    The main aim of this work is the investigation of the tribocorrosion behaviour of single layered zirconium oxynitride, ZrNxOy, thin films in alternative linear regime of sliding and immersed in an artificial sweat solution at room temperature. The films were produced by rf reactive magnetron sputtering, using a pure Zr target at a constant temperature of 300º C. Two different sets of samples were produced. In the first set of films the substrate bias voltage was the main variable, whereas in the second set, the flow rate of reactive gases (oxygen/nitrogen ratio) was varied. The control of the amount of oxygen allowed the film properties to be tailored from those of covalent zirconium nitride to those of the correspondent ionic oxide. During the wear test both the open circuit potential and the corrosion current were monitored. Also, Electrochemical Impedance Spectroscopy (EIS) tests were performed before and after sliding in order to evaluate, in detail, the modification of the protective character of the coating introduced by the joint action of wear and corrosion. The modifications of the coating microstructure and/or chemical composition induced by the variation of the deposition parameters was also evaluated and correlated with the corrosion mechanisms occurring in each system

    Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering

    Get PDF
    The main aim of this work is the investigation of the corrosion resistance of single layered zirconium oxynitride, ZrNxOy, thin films in artificial sweat solution at ambient emperature. The films were produced by rf reactive magnetron sputtering, using a pure Zr target at a constant temperature of 300 8C. Two different sets of samples were produced. In the first set of films, the substrate bias voltage was the main variable, whereas in the second set, the flow rate of reactive gases (oxygen/nitrogen ratio) was varied. The control of the amount of oxygen allowed the film properties to be tailored from those of covalent zirconium nitride to those of the correspondent ionic oxide. The corrosion behaviour was evaluated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) tests. The analysis of EIS data provided detailed information of the corrosion processes occurring at the surface of the system throughout the immersion time. The modifications of the coating microstructure and/or chemical composition induced by the variation of the deposition parameters were also evaluated and correlated with the corrosion mechanisms occurring in each system

    Property change in ZrNxOy thin films: effect of the oxygen fraction and bias voltage

    Get PDF
    The main purpose of this work consists on the preparation of single layered zirconium oxynitride, ZrNxOy, thin films, deposited by rf reactive magnetron sputtering. The depositions were carried out by varying the process parameters such as substrate bias voltage and flow rate of the reactive gases. Independently of O content, the samples prepared with oxygen fractions revealed crystalline structures basically constituted by face centred cubic ZrN grains. Atomic force microscopy (AFM) observation showed lower values of surface roughness for low oxygen fractions and a second region where roughness grows significantly, corresponding to the highest oxygen fractions. Ion bombardment promoted a continuous smoothing of the surface up to a bias voltage of -66 V. At a bias voltage of -75 V, roughening is again observed. The small increase of film hardness in low oxygen fractions ZrNxOy films was attributed to lattice distortions occurring as a result of the possible oxygen incorporation within the ZrN lattice and also grain size reduction. Residual stresses appeared to be an important parameter to explain the observed behaviour, namely in the group of samples prepared with variation in the bias voltage. Regarding colour variations, it was observed a clear dependence of the obtained colorations with oxygen fraction.http://www.sciencedirect.com/science/article/B6TW0-4D98KMK-9/1/e9723e69843e56c913d089e23ec8ff2

    Physical and morphological characterization of reactively magnetron sputtered TiN films

    Get PDF
    The present paper reports the influence of growth conditions on the properties of TiN thin films deposited by rf reactive magnetron sputtering in the low-pressure range. The effects of rf power at the Ti target and the negative bias voltage at the substrate in the morphology, structure, electrical resistivity and colour of the samples were studied in detail. X-Ray diffraction results showed that the delta-TiN phase (a(0) similar to 0.430 nm) is detected in all the samples. The sample prepared with grounded substrate revealed a lattice parameter close to the bulk value (0.424 nm), which is a consequence of a low stress state, due to the absence of ion bombardment. The sample deposited at 1000 W has a lattice parameter of 0.426 nm, close to that of the stress-free material (a(0) =0.424 nm), probably due to some stress relief. All films have a columnar-type structure, lying in the T and I zone of the Thornton Model. The resistivity of the TiN films is almost constant and close to 60 muOmega cm independently of the preparation conditions, except for the films deposited at 1000 W, p similar to 215 muOmega cm, and for the grounded sample, p similar to 153 muOmega cm. These values are probably due to cracks associated with stress relieves, in the first case, and the lack of ion bombardment that leads to films with lower density and higher number of defects in the second. No significant variations in colour were observed

    Properties of MoNxOy thin films as a function of N/O ratio

    Get PDF
    The main purpose of this work consists on the preparation of single layered molybdenum oxynitride, MoNxOy. The films were deposited on steel substrates by dc reactive magnetron sputtering. The depositions were carried out from a pure Mo target varying the flow rate of reactive gases, which allowed tune the crystallographic structure between insulating oxides and metallic nitrides and consequently electronic, mechanical and optical properties of the material. X-ray diffraction (XRD) results revealed the occurrence of molybdenum nitride for the films with low oxygen fraction: face-centred cubic phases (gama-Mo2N) for low nitrogen flow rate or cubic MoNx and hexagonal phase (delta-MoN) for high nitrogen flow rate. The increase of oxygen content induces an amorphization of the nitride phases and appearance of MoO3 phases. The increase of the oxygen fraction in the films induces also a high decrease in films hardness. Residual stresses revealed to be of compressive type, in the range of very few tenths of GPa to 2 GPa. All these results have been analysed and will be presented as a function of the deposition parameters, the chemical composition and the structure of the films.Fundação para a Ciência e a Tecnologia (FCT) – Pograma Operacional “Ciência, Tecnologia, Inovação” - POCTI/CTM/38086/2001.Comunidade Europeia (CE). Fundo Europeu de Desenvolvimento Regional (FEDER)
    corecore