19 research outputs found

    Circulation et dérive génétique du poliovirus en Afrique Centrale et de l'ouest

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Measles

    No full text
    International audienc

    Seroprevalence of measles and natural rubella antibodies among children in Bangui, Central African Republic

    No full text
    Abstract Background Passively acquired maternal antibodies are necessary to protect infants against circulating measles virus until they reach the eligible age of vaccination. Likewise, high levels of population immunity must be achieved and maintained to reduce measles virus transmission. This study was undertaken to (1) assess the presence of maternally acquired measles-specific IgG antibodies among infants less than 9 months of age in Bangui, Central African Republic and (2) determine the immune status of vaccination-age children and the concordance with reported vaccination status. A secondary objective was to describe the presence of rubella-specific IgG antibody in the study population. Methods Vaccination history and blood samples were collected from 395 children using blotting paper. Samples were analyzed for the presence of measles-specific IgG antibodies using commercial ELISA kits. Results Measles-specific IgG antibodies were detected in 51.3% of vaccinated children and 27.6% of non-vaccinated children. Maternally derived measles IgG antibodies were present in only 14.8% of infants aged 0-3 months and were absent in all infants aged 4-8 months. The presence of IgG-specific measles antibodies varied among children of vaccination age, from 57.3% for children aged 9 months to 5 years, to 50.6% for children aged 6-9 years and 45.6% for chidren aged 10 years and above. The overall prevalence of rubella-specific IgG was 55.4%, with a high prevalence (87.4%) among children over 10 years of age. Conclusion The findings suggest that despite efforts to accelerate measles control by giving a second dose of measles vaccine, a large number of children remain susceptible to measles virus. Further research is required to determine the geographic extent of immunity gaps and the factors that influence immunity to measles virus in the Central African Republic.</p

    Epidemiologic profile of measles in Central African Republic: A nine year survey, 2007-2015.

    No full text
    IntroductionMeasles remains a major public health problem in many developing countries in which vaccination coverage is poor, as is the case in the Central African Republic (CAR). At the beginning of the 2000s, a surveillance system was established in the country, and samples from suspected cases are regularly tested in the laboratory for serological confirmation. Since 2007, when case-by-case monitoring with standardized laboratory databases and monitoring, was set up, no assessment have been performed. Therfore, 9 years later it seemed appropriate to make a first assessment. The aim of the study reported here was to describe the epidemiology of measles in the CAR on the basis of surveillance and laboratory data.MethodA descriptive retrospective study was conducted, based on the databases of the measles surveillance programme and of the Institut Pasteur laboratory in Bangui during the period 2007-2015.ResultsDuring this study period, the surveillance programme notified 3767 cases. Of these, 2795 (75%) were sent for laboratory confirmation, and 24.6% (687/2795) were confirmed serologically. Of the 1797 cases of measles declared during this period by the surveillance programme, 1110 (61.8%) were confirmed clinically or by epidemiological linkage. The majority of confirmed cases (83.7%; 575/687) occurred in children under 10 years, over half of whom (44.2%; 304/687) were aged 1-4 years. Epidemics occurred regularly between 2011 and 2015, with > 10% of laboratory-confirmed cases. The rate of laboratory investigation was ConclusionMeasles remains a common, endemic illness in the CAR. Improved detection will require better measles surveillance, increased vaccination coverage, revision of the investigation forms to include the WHO case definition and training of the health personnel involved in case-finding in the field

    Genetic and phenotypic characterization of recently discovered enterovirus D type 111

    Get PDF
    International audienceMembers of the species Enterovirus D (EV-D) remain poorly studied. The two first EV-D types (EV-D68 and EV-D70) have regularly caused outbreaks in humans since their discovery five decades ago but have been neglected until the recent occurrence of severe respiratory diseases due to EV-D68. The three other known EV-D types (EV-D94, EV-D111 and EV-D120) were discovered in the 2000s-2010s in Africa and have never been observed elsewhere. One strain of EV-D111 and all known EV-D120s were detected in stool samples of wild non-human primates, suggesting that these viruses could be zoonotic viruses. To date, EV-D111s are only known through partial genetic sequences of the few strains that have been identified so far. In an attempt to bring new pieces to the puzzle, we genetically characterized four EV-D111 strains (among the seven that have been reported until now). We observed that the EV-D111 strains from human samples and the unique simian EV-D111 strain were not phylogenetically distinct, thus suggesting a recent zoonotic transmission. We also discovered evidences of probable intertypic genetic recombination events between EV-D111s and EV-D94s. As recombination can only happen in co-infected cells, this suggests that EV-D94s and EV-D111s share common replication sites in the infected hosts. These sites could be located in the gut since the phenotypic analysis we performed showed that, contrary to EV-D68s and like EV-D94s, EV-D111s are resistant to acid pHs. We also found that EV-D111s induce strong cytopathic effects on L20B cells, a cell line routinely used to specifically detect polioviruses. An active circulation of EV-D111s among humans could then induce a high number of false-positive detection of polioviruses, which could be particularly problematic in Central Africa, where EV-D111 circulates and which is a key region for poliovirus eradication
    corecore