1,907 research outputs found

    Equilibrium vortex formation in ultrarapidly rotating two-component Bose-Einstein condensates

    Full text link
    Equilibrium vortex formation in rotating binary Bose gases with a rotating frequency higher than the harmonic trapping frequency is investigated theoretically. We consider the system being evaporatively cooled to form condensates and a combined numerical scheme is applied to ensure the binary system being in an authentic equilibrium state. To keep the system stable against the large centrifugal force of ultrafast rotation, a quartic trapping potential is added to the existing harmonic part. Using the Thomas-Fermi approximation, a critical rotating frequency \Omega_c is derived, which characterizes the structure with or without a central density hole. Vortex structures are studied in detail with rotation frequency both above and below ?\Omega_c and with respect to the miscible, symmetrically separated, and asymmetrically separated phases in their nonrotating ground-state counterparts.Comment: 7 pages, 7 figure

    Compressive sensing based sparse antenna array design for directional modulation

    Get PDF
    Directional modulation (DM) can be achieved based on uniform linear arrays where the maximum spacing between adjacent antennas is half-wavelength of the frequency of interest in order to avoid spatial aliasing. To exploit the additional degrees of freedom provided in the spatial domain, sparse antenna arrays can be employed for more effective DM. In this study, the spare array design problem in the context of DM is formulated from the viewpoint of compressive sensing (CS), so that it can be solved using standard convex optimisation toolboxes in the CS area. In detail, a common set of active antennas needs to be found for all modulation symbols generating a response close to the desired one. The key to the solution is to realise that group sparsity has to be employed, as a common antenna set cannot be guaranteed if the antenna locations are optimised for each modulation symbol individually. Moreover, two practical scenarios are considered for the proposed design: robust design with model errors and design with practical non-zero-sized antennas, and corresponding solutions are found by modifying the proposed standard solution

    Post density functional theoretical studies of highly polar semiconductive Pb(Ti1−x_{1-x}Nix_{x})O3−x_{3-x} solid solutions: The effects of cation arrangement on band gap

    Full text link
    We use a combination of conventional density functional theory (DFT) and post-DFT methods, including the local density approximation plus Hubbard UU (LDA+UU), PBE0, and self-consistent GWGW to study the electronic properties of Ni-substituted PbTiO3_{3} (Ni-PTO) solid solutions. We find that LDA calculations yield unreasonable band structures, especially for Ni-PTO solid solutions that contain an uninterrupted NiO2_{2} layer. Accurate treatment of localized states in transition-metal oxides like Ni-PTO requires post-DFT methods. BB-site Ni/Ti cation ordering is also investigated. The BB-site cation arrangement alters the bonding between Ni and O, and therefore strongly affects the band gap (EgE_{\rm g}) of Ni-PTO. We predict that Ni-PTO solid solutions should have a direct band gap in the visible light energy range, with polarization similar to the parent PbTiO3_{3}. This combination of properties make Ni-PTO solid solutions promising candidate materials for solar energy conversion devices.Comment: 19 pages, 6 figure

    Local residents' perception on the impacts of ecotourism development in the Wolong Nature Reserve, China

    Get PDF
    This journal issue contain 2014 Sustainable Tourism and Resilience in Urban Environments - Conference Program & AbstractsThe Wolong Nature Reserve has been severely damaged by the Wen Chuen Earthquake in 2008. The earthquake not only destroyed the habitat of the Giant Panda, it has seriously affected the livelihood of local residents particularly those relied on the tourism industry. This study aimed to investigate the attitudes of local residents towards the ecotourism development in the Wolong Nature Reserve. Questionnaire survey has been conducted to glean the views from the local residents. Altogether 217 responses have been collected from two major towns within the Wolong Nature Reserve. Principal component analysis (PCA) was used to categorize the 16 impact items, which were listed in the questionnaire, into four major impacts namely positive impacts (PI), negative living environmental impacts (NLEI), negative social impacts (NSI), and negative economic impacts (NEI). Local residents’ willingness to participate (WTP) in the ecotourism development has also been investigated and positive association was reported between WTP and PI and NEI indicating that the residents with greater WTP concerned more on the PI and NEI than their counterparts. Beside, the residents who claimed that they have had serious losses in the earthquake indicated more positive attitude towards the ecotourism development. The findings suggested that local residents in the Wolong Nature Reserve are desperate to have the re-development of tourism industry and they have had an optimistic attitude towards the ecotourism development in the near future. However, they may possibly have expected too much on the development that could bring them enormous benefits and neglected those potential negative social, economic and environmental impacts. It would be dangerous if local residents are overly optimistic to the tourism development that may result of irreversible damages to the invaluable natural environment due to excessive tourism development.published_or_final_versio

    Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity

    No full text
    Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions

    Semi-analytical solution to the second-order wave loads on a vertical cylinder in bi-chromatic bi-directional waves

    Get PDF
    A complete solution is presented for the second-order wave loads experienced by a 15 uniform vertical cylinder in bi-chromatic bi-directional waves. The solution is obtained 16 based on the introduction of an assisting radiation potential without explicitly 17 evaluating the second-order diffraction potential. The semi-analytical formulation for 18 calculating the wave loads is provided and an efficient numerical technique is 19 developed to treat the oscillatory free-surface integral that appears in the force 20 formulation. After validating the present solution by comparing with the predictions 21 based on other methods, numerical studies are conducted for different combinations of 22 incident wave frequencies and wave headings, and the influence of frequencies and 23 headings of dual waves on the second-order wave loads is investigated. In addition, by 24 expressing the second-order wave loads in a power expansion with respect to the wave 25 frequency difference and wave heading difference which are both assumed to be small, 26 approximations on the calculation of wave loads are developed. The accuracy of 27 different approximations is assessed by comparing the approximate results with those 28 based on the complete solution

    A method to separate temperature and precipitation signals encoded in tree-ring widths for the western Tien Shan Mountains, northwest China

    Get PDF
    Separating temperature and precipitation signals encoded in tree rings is a complicated issue. Here, we present a separation method by combining two tree-ring width chronologies of Schrenk's spruce (Picea schrenkiana) from the upper and lower timberlines in the western Tien Shan Mountains, northwest China. Correlation analyses show that both chronologies correlate positively with precipitation. However, temperature correlates positively with the chronology from the upper timberline, while negatively with the chronology from the lower timberline. This suggests that the two chronologies contain similar precipitation information but opposite temperature signals. In light of this, we calculated the average and difference of the two chronologies, and found that each of them has a much stronger correlation with precipitation or temperature alone. Finally, we reconstructed local precipitation and temperature variations over the past 201 years by using the average and difference of the two chronologies. The two reconstructions do not have a significant correlation, but they have significant positive and negative relationships on the high- and low-frequency band, respectively.postprin
    • …
    corecore