852 research outputs found

    Hydrogen adsorption properties of in-situ synthesized Pt-decorated porous carbons templated from zeolite EMC-2

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordTo increase the interaction between the adsorbed hydrogen and the adsorbent surface to improve the hydrogen storage capacity at ambient temperature, decorating the sorbents with metal nanoparticles, such as Pd, Ni, and Pt has attracted the most attention. In this work, Ptdecorated porous carbons were in-situ synthesized via CVD method using Pt-impregnated zeolite EMC-2 as template and their hydrogen uptake performance up to 20 bar at 77, 87, 298 and 308 K has been investigated with focus on the interaction between the adsorbed H2 and the carbon matrix. It is found that the in-situ generated Pt-decorated porous carbons exhibit Pt nanoparticles with size of 2-4 nm homogenously dispersed in porous carbon, accompanied with observable carbon nanowires on the surface. The calculated H2 adsorption heats at/near 77 K are similar for both the plain carbon (7.8 kJ mol-1) and the Pt-decorated carbon (8.3 kJ mol-1) at H2 coverage of 0.08 wt.%, suggesting physisorption is dominated in both cases. However, the calculated H2 adsorption heat at/near 298 K of Pt-decorated carbon is 72 kJ mol-1 at initial H2 coverage, which decreases dramatically to 20.8 kJ mol-1 at H2 coverage of 0.014 wt.%, levels to 17.9 at 0.073 wt.%, then gradually decreases to 2.6 kJ mol-1 at 0.13 wt.% and closes to that of the plain carbon at H2 coverage above 0.13 wt.%. These results suggest that the introduce of Pt particles significantly enhances the interaction between the adsorbed H2 and the Pt-decorated carbon matrix at lower H2 coverage, resulting in an adsorption process consisting of chemisorption stage, mixed nature of chemisorption and physisorption stage along with the increase of H2 coverage (up to 0.13 wt.%). However, this enhancement in the interaction is outperformed by the added weight of the Pt and the blockage and/or occupation of some pores by the Pt nanoparticles, which results in lower H2 uptake than that of the plain carbon.EU RFCSLeverhulme TrustNational Natural Science Foundation of Chin

    Nonlinear Decoherence in Quantum State Preparation of a Trapped Ion

    Get PDF
    We present a nonlinear decoherence model which models decoherence effect caused by various decohereing sources in a quantum system through a nonlinear coupling between the system and its environment, and apply it to investigating decoherence in nonclassical motional states of a single trapped ion. We obtain an exactly analytic solution of the model and find very good agreement with experimental results for the population decay rate of a single trapped ion observed in the NIST experiments by Meekhof and coworkers (D. M. Meekhof, {\it et al.}, Phys. Rev. Lett. {\bf 76}, 1796 (1996)).Comment: 5 pages, Revte

    Transpolar arc observation after solar wind entry into the high-latitude magnetosphere

    No full text
    Recently, Cluster observations have revealed the presence of new regions of solar wind plasma entry at the high-latitude magnetospheric lobes tailward of the cusp region, mostly during periods of northward interplanetary magnetic field. In this study, observations from the Global Ultraviolet Imager (GUVI) experiment on board the TIMED spacecraft and Wideband Imaging Camera imager on board the IMAGE satellite are used to investigate a possible link between solar wind entry and the formation of transpolar arcs in the polar cap. We focus on a case when transpolar arc formation was observed twice right after the two solar wind entry events were detected by the Cluster spacecraft. In addition, GUVI and IMAGE observations show a simultaneous occurrence of auroral activity at low and high latitudes after the second entry event, possibly indicating a two-part structure of the continuous band of the transpolar arc

    Multiscale petrographic heterogeneity and their implications for the nanoporous system of the Wufeng-Longmaxi shales in Jiaoshiba area, Southeast China: Response to depositional-diagenetic process

    Get PDF
    The organic matter-rich shales in Wufeng-Longmaxi Formation, Jiaoshiba area, Southeast China, are showing a notable petrographic heterogeneity characteristic within the isochronous stratigraphic framework, which lead to vast differences in the mineral composition and organic matter abundance in the adjacent sections of the shale reservoir. The studied shale has been divided into three systems tracts: a transgressive systems tract (TST), an early highstand systems tract (EHST), and a late highstand systems tract (LHST). Multiple-scale petrographic observation and detailed mineralogical and geochemical analyses were combined to investigate the manifestation, origin, and the ways by which the shale heterogeneity is affected. The results indicate that polytropic depositional environments lead to different components in sediment. Subsequently, these differences among shale sections become more apparent through different diagenetic pathways. During the deposition of the section TST, the Hirnantian glaciation and regional volcanism played a crucial role, contributing to the abundant accumulation of fine-grained intrabasinal silica and organic matter. In diagenesis stage, authigenic quartz aggregates derived from siliceous organisms are formed. They filled in primary interparticle pores, forming a rigid particle-bracing structure that provide effective resistivity against the compaction and spaces for organic matter migration and occlusion. Finally, the migrated organic matter left plenty of newly created pore spaces that constituted a great portion of the total porosity of shale reservoir. The depositional process of section EHST is strongly influenced by contour current, which brings about more extrabasinal influx and impoverishes organic matter. In diagenesis stage, the rigid particle-bracing structure could only be preserved in limited areas, since insufficient siliceous supply could not produce enough authigenic quartz. Primary interparticle pores are significantly reduced owing to compaction, leaving less space for later organic matter migration and occlusion. As a result, the total porosity of shale reservoir declines in this section. In a rapid tectonic-uplifting background, the deposition of section LHST is associated with a rapid increase in terrigenous clay minerals, which further dilutes organic matter. Ductile clay experienced strong compaction and then occupies most of the primary interparticle space. Rigid particles are wrapped by a large number of clays, which has destroyed the particle-bracing structure. As a result, the nanoporous system in the shale could not be well preserved

    Stereoscopic observation of slipping reconnection in a double candle-flame-shaped solar flare

    Get PDF
    The 2011 January 28 M1.4 flare exhibits two side-by-side candle-flame-shaped flare loop systems underneath a larger cusp-shaped structure during the decay phase, as observed at the northwestern solar limb by the Solar Dynamics Observatory. The northern loop system brightens following the initiation of the flare within the southern loop system, but all three cusp-shaped structures are characterized by ~10 MK temperatures, hotter than the arch-shaped loops underneath. The "Ahead" satellite of the Solar Terrestrial Relations Observatory provides a top view, in which the post-flare loops brighten sequentially, with one end fixed while the other apparently slipping eastward. By performing stereoscopic reconstruction of the post-flare loops in EUV and mapping out magnetic connectivities, we found that the footpoints of the post-flare loops are slipping along the footprint of a hyperbolic flux tube (HFT) separating the two loop systems and that the reconstructed loops share similarity with the magnetic field lines that are traced starting from the same HFT footprint, where the field lines are relatively flexible. These results argue strongly in favor of slipping magnetic reconnection at the HFT. The slipping reconnection was likely triggered by the flare and manifested as propagative dimmings before the loop slippage is observed. It may contribute to the late-phase peak in Fe xvi 33.5 nm, which is even higher than its main-phase counterpart, and may also play a role in the density and temperature asymmetry observed in the northern loop system through heat conduction

    4.5 years multi-wavelength observations of Mrk 421 during the ARGO-YBJ and Fermi common operation time

    Get PDF
    We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low and high activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be related to the acceleration process or to the environment properties.Comment: 17 pages, 9 figures, 5 tables, Accepted for publication in ApJ

    Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment

    Get PDF
    We report the observation of TeV gamma-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) gamma-ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by Milagro.Comment: 14 pages, 4 figure

    Observation of TeV gamma-rays from the unidentified source HESS J1841-055 with the ARGO-YBJ experiment

    Get PDF
    We report the observation of a very high energy \gamma-ray source, whose position is coincident with HESS J1841-055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from November 2007 to July 2012. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function we estimate an extension \sigma=(0.40(+0.32,-0.22}) degree, consistent with the HESS measurement. The observed energy spectrum is dN/dE =(9.0-+1.6) x 10^{-13}(E/5 TeV)^{-2.32-+0.23} photons cm^{-2} s^{-1} TeV^{-1}, in the energy range 0.9-50 TeV. The integral \gamma-ray flux above 1 TeV is 1.3-+0.4 Crab units, which is 3.2-+1.0 times the flux derived by HESS. The differences in the flux determination between HESS and ARGO-YBJ, and possible counterparts at other wavelengths are discussed.Comment: 17 pages, 4 figures, have been accepted for publication in Ap
    • 

    corecore