54 research outputs found
Controlled photon transfer between two individual nanoemitters via shared high-Q modes of a microsphere resonator
We realize controlled cavity-mediated photon transfer between two single
nanoparticles over a distance of several tens of micrometers. First, we show
how a single nanoscopic emitter attached to a near-field probe can be coupled
to high-Q whispering-gallery modes of a silica microsphere at will. Then we
demonstrate transfer of energy between this and a second nanoparticle deposited
on the sphere surface. We estimate the photon transfer efficiency to be about
six orders of magnitude higher than that via free space propagation at
comparable separations.Comment: accepted for publication in Nano Letter
Realization of two Fourier-limited solid-state single-photon sources
We demonstrate two solid-state sources of indistinguishable single photons.
High resolution laser spectroscopy and optical microscopy were combined at T =
1.4 K to identify individual molecules in two independent microscopes. The
Stark effect was exploited to shift the transition frequency of a given
molecule and thus obtain single photon sources with perfect spectral overlap.
Our experimental arrangement sets the ground for the realization of various
quantum interference and information processing experiments.Comment: 6 page
Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control
We present a full-range Fourier-domain optical coherence tomography (OCT) system that is capable of acquiring two-dimensional images of living tissue in a single shot. By using line illumination of the sample in combination with a two-dimensional imaging spectrometer, 1040 depth scans are performed simultaneously on a sub-millisecond timescale. Furthermore, we demonstrate an easy and flexible real-time single-shot technique for full-range (complex-conjugate cancelled) OCT imaging that is compatible with both two-dimensional as well as ultrahighresolution OCT. By implementing a dispersion imbalance between reference and sample arms of the interferometer, we eliminate the complex-conjugate signal through numerical dispersion compensation, effectively increasing the useful depth range by a factor of two. The system allows us to record 6.7 × 3.2 mm images at 5 μm depth resolution in 0.2 ms. Data postprocessing requires only 4 s. We demonstrate the capability of our system by imaging the anterior chamber of a mouse eye in vitro, as well as human skin in vivo. © 2009 Optical Society of America
Comparative Methylation of ERVWE1/Syncytin-1 and Other Human Endogenous Retrovirus LTRs in Placenta Tissues
Human endogenous retroviruses (HERVs) are globally silent in somatic cells. However, some HERVs display high transcription in physiological conditions. In particular, ERVWE1, ERVFRDE1 and ERV3, three proviruses of distinct families, are highly transcribed in placenta and produce envelope proteins associated with placenta development. As silencing of repeated elements is thought to occur mainly by DNA methylation, we compared the methylation of ERVWE1 and related HERVs to appreciate whether HERV methylation relies upon the family, the integration site, the tissue, the long terminal repeat (LTR) function or the associated gene function. CpG methylation of HERV-W LTRs in placenta-associated tissues was heterogeneous but a joint epigenetic control was found for ERVWE1 5′LTR and its juxtaposed enhancer, a mammalian apparent LTR retrotransposon. Additionally, ERVWE1, ERVFRDE1 and ERV3 5′LTRs were all essentially hypomethylated in cytotrophoblasts during pregnancy, but showed distinct and stage-dependent methylation profiles. In non-cytotrophoblastic cells, they also exhibited different methylation profiles, compatible with their respective transcriptional activities. Comparative analyses of transcriptional activity and LTR methylation in cell lines further sustained a role for methylation in the control of functional LTRs. These results suggest that HERV methylation might not be family related but copy-specific, and related to the LTR function and the tissue. In particular, ERVWE1 and ERV3 could be developmentally epigenetically regulated HERVs
A prospective comparison of ER, PR, Ki67 and gene expression in paired sequential core biopsies of primary, untreated breast cancer
BACKGROUND: Sequential biopsy of breast cancer is used to assess biomarker effects and drug efficacy. The preoperative "window of opportunity" setting is advantageous to test biomarker changes in response to therapeutic agents in previously untreated primary cancers. This study tested the consistency over time of paired, sequential biomarker measurements on primary, operable breast cancer in the absence of drug therapy. METHODS: Immunohistochemistry was performed for ER, PR and Ki67 on paired preoperative/operative tumor samples taken from untreated patients within 2 weeks of each other. Microarray analysis on mRNA extracted from formalin fixed paraffin embedded cores was performed using Affymetrix based arrays on paired core biopsies analysed using Ingenuity Pathway Analysis (IPA) and Gene Set Analysis (GSA). RESULTS: In 41 core/resection pairs, the recognised trend to lower ER, PR and Ki67 score on resected material was confirmed. Concordance for ER, PR and Ki67 without changing biomarker status (e.g. ER+ to ER-) was 90, 74 and 80 % respectively. However, in 23 paired core samples (diagnostic core v on table core), Ki67 using a cut off of 13.25 % was concordant in 22/23 (96 %) and differences in ER and PR immunohistochemistry by Allred or Quickscore between the pairs did not impact hormone receptor status. IPA and GSA demonstrated substantial gene expression changes between paired cores at the mRNA level, including reduced expression of ER pathway analysis on the second core, despite the absence of drug intervention. CONCLUSIONS: Sequential core biopsies of primary breast cancer (but not core versus resection) was consistent and is appropriate to assess the effects of drug therapy in vivo on ER, PR and Ki67 using immunohistochemistry. Conversely, studies utilising mRNA expression may require non-treatment controls to distinguish therapeutic from biopsy differences
A methodology for springback prediction
The springback of simple geometries can be predicted through theoretical analysis, however problems arise when transferring this analysis to the manufacturing environment. To determine why this is the case, a studyof small curvature free bending through theoreticalanalysis, manufacturing data and Finite Element (FE)simulation was completed.The theoretical analysis provided an understanding of the behavior of springback and gave accurate predictions in a controlled environment. The manufacturing and Finite Element data verified the trends predicted by theory, but lacked in accuracy. The paper concludes by proposing a prediction method based solely on the geometry that is well defined in both environments.<br /
Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe
Integrated assessment of groundwater resources in the Oueme Basin, Benin, West Africa
An integrated assessment of groundwater resources in Benin, West Africa was performed within the framework of the EC-funded research project RIVERTWIN (www.rivertwin.org). The assessment included a spatial analysis of groundwater relevant parameters taken from more than 4000 wells stored in a countrywide water database (BDI - Banque des Données Intégrée) and an estimation of the spatial and temporal distribution of groundwater recharge using a modified version of the hydrological model HBV. Additionally, a socio-economic assessment of the impacts of groundwater availability and accessibility on national health issues as well as an assessment of groundwater development costs was carried out. The analysis revealed particularly unfavourable conditions for groundwater use in the northern part of the country where groundwater recharge during the wet season does not lead to the formation of persistent groundwater storage in its shallow, unconfined aquifers. Poor storage capacity and hydraulic properties of the deeper fractured aquifers additionally limit the capacity of individual wells to capture groundwater recharge. Including climate change scenarios forecasting less precipitation (generated from global climate models (GCM) based on IPCC scenarios) indicates that the situation in water scarce regions will worsen, as recharge volumes lessen and occur over a shorter time period. Drilling more wells may be a limited option to capture larger portions of the recharge, since the capture zone and therefore the regional influence of existing wells is rather small. In the south, deeper confined aquifers guarantee better and more reliable yields, yet the lack of long-term monitoring and groundwater age data does not allow an appraisal of the limits of the sustainable use of these aquifers. Finally, it has been shown that access to suitable aquifers and diarrhea prevalence are spatially correlated. Access to groundwater is thereby not only a function of aquifer suitability and groundwater availability but a function of well development (mainly drilling) costs as well. The present study can be seen as a first attempt of an integrated evaluation of the groundwater resources and the development options based on the BDI data set. However, it can clearly be seen that the amount, nature and reliability of the data currently available is not sufficient to come to a clear, spatially explicit description of groundwater resources in the country. Improved monitoring and the use of advanced data collection methods (isotopic analysis, remote sensing, fully coupled models of the hydrological cycle) are required to improve the understanding Benin's groundwater resources. © 2008 Elsevier Ltd. All rights reserved
- …