1,683 research outputs found

    GRB Observed by IBIS/PICsIT in the MeV Energy Range

    Full text link
    We present the preliminary results of a systematic search for GRB and other transients in the publicly available data for the IBIS/PICsIT (0.2-10 MeV) detector on board INTEGRAL. Lightcurves in 2-8 energy bands with time resolution from 1 to 62.5 ms have been collected and an analysis of spectral and temporal characteristics has been performed. This is the nucleus of a forthcoming first catalog of GRB observed by PICsIT.Comment: 6 pages, 3 figures. Poster presented at COSPAR 2008. Advaces in Space Research, accepted for publicatio

    INTEGRAL high energy behaviour of 4U 1812-12

    Full text link
    The low mass X-ray binary system 4U 1812-12 was monitored with the INTEGRAL observatory in the period 2003-2004 and with BeppoSAX on April 20, 2000. We report here on the spectral and temporal analysis of both persistent and burst emission. The full data set confirms the persistent nature of this burster, and reveals the presence of emission up to 200 keV. The persistent spectrum is well described by a comptonization (CompTT) model plus a soft blackbody component. The source was observed in a hard spectral state with a 1-200 keV luminosity of 2*10^(36) ergs/s and L/LEdd~1% and no meaningful flux variation has been revealed, as also confirmed by a 2004 RXTE observation. We have also detected 4 bursts showing double peaked profiles and blackbody spectra with temperatures ranging from 1.9 to 3.1 keV.Comment: 6 pages, 4 figures. Accepted for publication by A&

    In-flight calibration of the INTEGRAL/IBIS mask

    Full text link
    Since the release of the INTEGRAL Offline Scientific Analysis (OSA) software version 9.0, the ghost busters module has been introduced in the INTEGRAL/IBIS imaging procedure, leading to an improvement of the sensitivity around bright sources up to a factor of 7. This module excludes in the deconvolution process the IBIS/ISGRI detector pixels corresponding to the projection of a bright source through mask elements affected by some defects. These defects are most likely associated with screws and glue fixing the IBIS mask to its support. Following these major improvements introduced in OSA 9, a second order correction is still required to further remove the residual noise, now at a level of 0.2-1% of the brightest source in the field of view. In order to improve our knowledge of the IBIS mask transparency, a calibration campaign has been carried out during 2010-2012. We present here the analysis of these data, together with archival observations of the Crab and Cyg X-1, that allowed us to build a composite image of the mask defects and to investigate the origin of the residual noise in the IBIS/ISGRI images. Thanks to this study, we were able to point out a simple modification of the ISGRI analysis software that allows to significantly improve the quality of the images in which bright sources are detected at the edge of the field of view. Moreover, a refinement of the area excluded by the ghost busters module is considered, and preliminary results show improvements to be further tested. Finally, this study indicates further directions to be investigated for improving the ISGRI sensitivity, such as taking into account the thickness of the screws in the mask model or studying the possible discrepancy between the modeled and actual mask element bridges.Comment: accepted for publication in the proceedings of "An INTEGRAL view of the high-energy sky (the first 10 years)" 9th INTEGRAL Workshop, October 15-19, 2012, Paris, France, in Proceedings of Science (INTEGRAL 2012), Eds. A. Goldwurm, F. Lebrun and C. Winkler, (http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176), id 154; 6 pages, 4 figures, see the PoS website for the full resolution versio

    S-antigen and rod-opsin immunoreactions in midline brain neoplasms of transgenic mice: Similarities to pineal cell tumors and certain medulloblastomas in man.

    Get PDF
    Transgenic mice expressing the large T-antigen of the simian virus 40 (SV 40) under the control of 1) the enhancer of Moloney murine sarcoma virus (MSV) and 2) the SV 40 promoter develop undifferentiated neuroectodermal tumors located in the midline of the dorsal brain surface, abnormalities in lens fiber differentiation and retinal dysplasia. In this study the brain neoplasms of six adult animals and the brain of one 11-day old mouse were examined by conventional histology and immunocytochemical demonstration of S-antigen, rod-opsin, neuron-specific enolase, neurofilaments (160 and 200 kDa) and glial fibrillary acidic protein. According to histologic criteria the neoplasms were characterized as "primitive" neuroectodermal tumors composed mainly of small cells with scanty and ill-defined cytoplasm. Neoplastic cells displaying immunoreactive S-antigen were found in five brain tumors; three of these tumors also contained a limited number of rod-opsin immunoreactive neoplastic cells. Some tumor cells had neurite-like processes containing immunoreactive neurofilament (200 kDa). No pathologic lesions were found in the brain of the 11-day old animal. Tumors in transgenic mice may resemble pineal cell tumors and a special subtype of medulloblastoma in man. These neoplasms contain S-antigen immunoreactive and also rod-opsin immunoreactive tumors cells in certain cases. The findings suggest that transgenic mice expressing the large T-antigen of SV 40 may become a valuable animal model for analysing the origin, histogenesis and development of primitive neuroectodermal tumors with photoreceptor-like features (pineal cell tumors and certain medulloblastomas)

    The discovery, monitoring and environment of SGR J1935+2154

    Get PDF
    We report on the discovery of a new member of the magnetar class, SGR J1935+2154, and on its timing and spectral properties measured by an extensive observational campaign carried out between July 2014 and March 2015 with Chandra and XMM-Newton (11 pointings). We discovered the spin period of SGR J1935+2154 through the detection of coherent pulsations at a period of about 3.24s. The magnetar is slowing-down at a rate of 1.43(1)x10^{-11} s/s and with a decreasing trend due to a negative second period derivative of -3.5(7)x10^{-19} s/s^2. This implies a surface dipolar magnetic field strength of about 2.2x10^{14} G, a characteristic age of about 3.6kyr and, a spin-down luminosity L_{sd} of about 1.7x10^{34} erg/s. The source spectrum is well modelled by a blackbody with temperature of about 500eV plus a power-law component with photon index of about 2. The source showed a moderate long-term variability, with a flux decay of about 25\% during the first four months since its discovery, and a re-brightening of the same amount during the second four months. The X-ray data were also used to study the source environment. In particular, we discovered a diffuse emission extending on spatial scales from about 1" up to at least 1' around SGR J1935+2154 both in Chandra and XMM-Newton data. This component is constant in flux (at least within uncertainties) and its spectrum is well modelled by a power-law spectrum steeper than that of the pulsar. Though a scattering halo origin seems to be more probable we cannot exclude that part, or all, of the diffuse emission is due to a pulsar wind nebula.Comment: To appear in MNRAS; 10 pages, 3 color figures, 4 table

    IGR J08408--4503: a new recurrent Supergiant Fast X-ray Transient

    Full text link
    The supergiant fast X-ray transient IGR J08408-4503 was discovered by INTEGRAL on May 15, 2006, during a bright flare. The source shows sporadic recurrent short bright flares, reaching a peak luminosity of 10^36 erg s^-1 within less than one hour. The companion star is HD 74194, an Ob5Ib(f) supergiant star located at 3 kpc in the Vela region. We report the light curves and broad-band spectra (0.1-200 keV) of all the three flares of IGR J08408-4503 detected up to now based on INTEGRAL and Swift data. The flare spectra are well described by a power-law model with a high energy cut-off at ~15 keV. The absorption column density during the flares was found to be ~10^21 cm^-2, indicating a very low matter density around the compact object. Using the supergiant donor star parameters, the wind accretion conditions imply an orbital period of the order of one year, a spin period of the order of hours and a magnetic field of the order of 10^13 G.Comment: 5 pages, 2 figures, accepted for publication in Astrophysical Journal Letter

    INTEGRAL and Magnetars

    Get PDF
    Thanks to INTEGRAL's long exposures of the Galactic Plane, the two brightest Soft Gamma-Ray Repeaters, SGR 1806-20 and SGR 1900+14, have been monitored and studied in detail for the first time at hard-X/soft-gamma rays. SGR 1806-20, lying close to the Galactic Centre, and being very active in the past two years, has provided a wealth of new INTEGRAL results, which we will summarise here: more than 300 short bursts have been observed from this source and their characteristics have been studied with unprecedented sensitivity in the 15-200 keV range. A hardness-intensity anticorrelation within the bursts has been discovered and the overall Number-Intensity distribution of the bursts has been determined. The increase of its bursting activity eventually led to the December 2004 Giant Flare for which a possible soft gamma-ray (>80 keV) early afterglow has been detected with INTEGRAL. The deep observations allowed us to discover the persistent emission in hard X-rays (20-150 keV) from 1806-20 and 1900+14, the latter being in quiescent state, and to directly compare the spectral characteristics of all Magnetars (two SGRs and three Anomalous X-ray Pulsars) detected with INTEGRAL.Comment: 8 pages, 9 figures, Proceedings of the 6th INTEGRAL Workshop, Moscow, 2006 07 03-07, ESA SP-62

    The Large-scale Bipolar Wind in the Galactic Center

    Get PDF
    During a 9-month campaign (1996--1997), the Midcourse Space Experiment (MSX) satellite mapped the Galactic Plane at mid-infrared wavelengths (4.3--21.3um). Here we report evidence for a spectacular limb- brightened, bipolar structure at the Galactic Center extending more than a degree (170 pc at 8.0 kpc) on either side of the plane. The 8.3um emission shows a tight correlation with the 3, 6 and 11 cm continuum structure over the same scales. Dense gas and dust are being entrained in a large-scale bipolar wind powered by a central starburst. The inferred energy injection at the source is ~10^54/kappa erg for which \kappa is the covering fraction of the dusty shell (kappa <= 0.1). There is observational evidence for a galactic wind on much larger scales, presumably from the same central source which produced the bipolar shell seen by MSX. Sofue has argued that the North Polar Spur -- a thermal x-ray/radio loop which extends from the Galactic Plane to b = +80 deg -- was powered by a nuclear explosion (1-30 x 10^55 erg) roughly 15 Myr ago. We demonstrate that an open-ended bipolar wind (~10^55 erg), when viewed in near-field projection, provides the most natural explanation for the observed loop structure. The ROSAT 1.5 keV diffuse x-ray map over the inner 45 deg provides compelling evidence for this interpretation. Since the faint bipolar emission would be very difficult to detect beyond the Galaxy, the phenomenon of large-scale galactic winds may be far more common than has been observed to date.Comment: 24 pages, 6 figures, aastex. High resolution figures are available at ftp://www.aao.gov.au/pub/local/jbh/astro-ph/GC/. Astrophysical Journal, accepte
    corecore