321 research outputs found

    Simulation and experimental study of rheological properties of CeO2 – water nanofluid

    Get PDF
    Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Metal oxide nanoparticles offer great merits over controlling rheological, thermal, chemical and physical properties of solutions. The effectiveness of a nanoparticle to modify the properties of a fluid depends on its diffusive properties with respect to the fluid. In this study, rheological properties of aqueous fluids (i.e. water) were enhanced with the addition of CeO2 nanoparticles. This study was characterized by the outcomes of simulation and experimental results of nanofluids. The movement of nanoparticles in the fluidic media was simulated by a large-scale molecular thermal dynamic program (i.e. LAMMPS). The COMPASS force field was employed with smoothed particle hydrodynamic potential (SPH) and discrete particle dynamics potential (DPD). However, this study develops the understanding of how the rheological properties are affected due to the addition of nanoparticles in a fluid and the way DPD and SPH can be used for accurately estimating the rheological properties with Brownian effect. The rheological results of the simulation were confirmed by the convergence of the stress autocorrelation function, whereas experimental properties were measured using a rheometer. These rheological values of simulation were obtained and agreed within 5 % of the experimental values; they were identified and treated with a number of iterations and experimental tests. The results of the experiment and simulation show that 10 % CeO2 nanoparticles dispersion in water has a viscosity of 2.0–3.3 mPasPeer reviewedFinal Published versio

    The hyaluronan-related genes HAS2, HYAL1-4, PH20 and HYALP1 are associated with prognosis, cell viability and spheroid formation capacity in ovarian cancer

    Get PDF
    Purpose: Hyaluronan modulates tumour progression, including cell adhesion, cohesion, proliferation and invasion, and the cancer stem cell phenotype. In ovarian cancer, high levels of stromal hyaluronan are associated with poor prognosis. In this work, hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-4, PH-20, HYALP1) were examined with regard to different levels of gene expression and its influence on ovarian cancer patients’ survival. The impact of a siRNA depletion of HAS2 was investigated in vitro. Methods: Using the Kaplan–Meier Plotter tool, we investigated the influence of hyaluronic synthases and hyaluronidases on the survival of a collective of 1435 ovarian cancer patients. Differences in gene expression between normal (n = 46) and cancerous (n = 744) ovarian tissue were examined using the TNMplot database. Following an evaluation of hyaluronan-related gene expression in the ATCC ovarian cancer panel, we studied SKOV3 and SW 626 ovarian cancer cells subjected to HAS2 siRNA or control siRNA treatment in terms of HAS1-3, HYAL2 and HYAL3 mRNA expression. We investigated the ability to form spheroids using the Hanging Drop method and the response to chemotherapy at different concentrations using the MTT Assay. By STRING analysis, interactions within the enzymes of the hyaluronic acid system and with binding partners were visualized. Results: HAS1, HYAL1 and HYAL4 mRNA expression is significantly upregulated, whereas HAS2, HYAL2 and HYAL3 mRNA expression is significantly downregulated in ovarian cancer tissue compared to controls. HAS2 improves cell viability, the capability to form tumour spheroids and has a negative prognostic value regarding overall survival. Lower HAS2 expression and high expression of HYAL2 and HYAL3 favours the survival of ovarian cancer patients. HAS2 knockdown cells and control cells showed a moderate response to combinatorial in vitro chemotherapy with taxol and cisplatin. Conclusion: In conclusion, our study shows that the hyaluronic acid system has a relevant influence on the survival of ovarian cancer patients and could therefore be considered as a possible prognostic factor

    Impaired leukocyte influx in cervix of postterm women not responding to prostaglandin priming

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prolonged pregnancies are associated with increased rate of maternal and fetal complications. Post term women could be divided into at least two subgroups, one where parturition is possible to induce by prostaglandins and one where it is not. Our aim was to study parameters in cervical biopsies in women with spontaneous delivery at term (controls) and compare to those that are successfully induced post term (responders), and those that are not induced (non-responders), by local prostaglandin treatment.</p> <p>Methods</p> <p>Stromal parameters examined in this study were the accumulation of leukocytes (CD45, CD68), mRNAs and/or proteins for the extracellular matrix degrading enzymes (matrix metalloproteinase (MMP)-2, MMP-8 and MMP-9), their inhibitors (tissue inhibitor of MMP (TIMP)-1 and TIMP-2), interleukin-8 (IL-8), the platelet activating factor-receptor (PAF-R), syndecan-1 and estrogen binding receptors (estrogen receptor (ER)α, ERβ and G-coupled protein receptor (GPR) 30) as well as the proliferation marker Ki-67.</p> <p>Results</p> <p>The influx of leukocytes as assessed by CD45 was strongest in the responders, thereafter in the controls and significantly lower in the non-responders. IL-8, PAF-R and MMP-9, all predominantly expressed in leukocytes, showed significantly reduced immunostaining in the group of non-responders, while ERα and GPR30 were more abundant in the non-responders, as compared to the controls.</p> <p>Conclusion</p> <p>The impaired leukocyte influx, as reflected by the reduced number of CD45 positive cells as well as decreased immunostaining of IL-8, PAF-R and MMP-9 in the non-responders, could be one explanation of the failed ripening of the cervix in post term women. If the decreased leukocyte influx is a primary explanation to absent ripening or secondary, as a result of other factors, is yet to be established.</p

    Preliminary clinical study of left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy by three-dimensional speckle tracking imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-ischemic dilated cardiomyopathy (DCM) is the most common cardiomyopathy worldwide, with significant mortality. Correct evaluation of the patient's myocardial function has important clinical significance in the diagnosis, therapeutic effect assessment and prognosis in non-ischemic DCM patients. This study evaluated the feasibility of three-dimensional speckle tracking imaging (3D-STE) for assessment of the left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy (DCM).</p> <p>Methods</p> <p>Apical full-volume images were acquired from 65 patients with non-ischemic DCM (DCM group) and 59 age-matched normal controls (NC group), respectively. The following parameters were measured by 3D-STE: the peak systolic radial strain (RS), circumferential strain (CS), longitudinal strain (LS) of each segment. Then all the parameters were compared between the two groups.</p> <p>Results</p> <p>The peak systolic strain in different planes had certain regularities in normal groups, radial strain (RS) was the largest in the mid region, the smallest in the apical region, while circumferential strain (CS) and longitudinal strain (LS) increased from the basal to the apical region. In contrast, the regularity could not be applied to the DCM group. RS, CS, LS were significantly decreased in DCM group as compared with NC group (<it>P </it>< 0.001 for all). The interobserver, intraobserver and test-retest reliability were acceptable.</p> <p>Conclusions</p> <p>3D-STE is a reliable tool for evaluation of left ventricular myocardial strain in patients with non-ischemic DCM, with huge advantage in clinical application.</p

    Altered left atrial 4D flow characteristics in patients with paroxysmal atrial fibrillation in the absence of apparent remodeling

    Get PDF
    The pathophysiology behind thrombus formation in paroxysmal atrial fibrillation (AF) patients is very complex. This can be due to left atrial (LA) flow changes, remodeling, or both. We investigated differences for cardiovascular magnetic resonance (CMR)-derived LA 4D flow and remodeling characteristics between paroxysmal AF patients and patients without cardiac disease. In this proof-of-concept study, the 4D flow data were acquired in 10 patients with paroxysmal AF (age=61 +/- 8 years) and 5 age/gender matched controls (age=56 +/- 1 years) during sinus rhythm. The following LA and LA appendage flow parameters were obtained: flow velocity (mean, peak), stasis defined as the relative volume with velocities<10 cm/s, and kinetic energy (KE). Furthermore, LA global strain values were derived from b-SSFP cine images using dedicated CMR feature-tracking software. Even in sinus rhythm, LA mean and peak flow velocities over the entire cardiac cycle were significantly lower in paroxysmal AF patients compared to controls [(13.12.4 cm/s vs. 16.7 +/- 2.1 cm/s, p=0.01) and (19.3 +/- 4.7 cm/s vs. 26.8 +/- 5.5 cm/s, p=0.02), respectively]. Moreover, paroxysmal AF patients expressed more stasis of blood than controls both in the LA (43.2 +/- 10.8% vs. 27.8 +/- 7.9%, p=0.01) and in the LA appendage (73.3 +/- 5.7% vs. 52.8 +/- 16.2%, p=0.04). With respect to energetics, paroxysmal AF patients demonstrated lower mean and peak KE values (indexed to maximum LA volume) than controls. No significant differences were observed for LA volume, function, and strain parameters between the groups. Global LA flow dynamics in paroxysmal AF patients appear to be impaired including mean/peak flow velocity, stasis fraction, and KE, partly independent of LA remodeling. This pathophysiological flow pattern may be of clinical value to explain the increased incidence of thromboembolic events in paroxysmal AF patients, in the absence of actual AF or LA remodeling.Cardiovascular Aspects of Radiolog

    IL-21 induces in vivo immune activation of NK cells and CD8+ T cells in patients with metastatic melanoma and renal cell carcinoma

    Get PDF
    PURPOSE: Human interleukin-21 (IL-21) is a class I cytokine previously reported in clinical studies on immune responsive cancers. Here we report the effects of systemic IL-21 therapy on the immune system in two phase 1 trials with this novel cytokine. EXPERIMENTAL DESIGN: Recombinant IL-21 was administered by intravenous bolus injection at dose levels from 1 to 100 microg/kg using two planned treatment regimens: thrice weekly for 6 weeks (3/week); or once daily for five consecutive days followed by nine dose-free days (5 + 9). The following biomarkers were studied in peripheral blood mononuclear cells (PBMC) during treatment: phosphorylation of STAT3, alterations in the composition of leukocyte subsets, ex vivo cytotoxicity, expression of effector molecules in enriched CD8(+) T cells and CD56(+) NK cells by quantitative RT-PCR, and gene array profiling of CD8(+) T cells. RESULTS: Effects of IL-21 were observed at all dose levels. In the 5 + 9 regimen IL-21 induced a dose dependent decrease in circulating NK cells and T cells followed by a return to baseline in resting periods. In both CD8(+) T cells and CD56(+) NK cells we found up-regulation of perforin and granzyme B mRNA. In addition, full transcriptome analysis of CD8(+) T cells displayed changes in several transcripts associated with increased cell cycle progression, cellular motility, and immune activation. Finally, cytotoxicity assays showed that IL-21 enhanced the ability of NK cells to kill sensitive targets ex vivo. CONCLUSIONS: IL-21 was biologically active at all dose levels administered with evidence of in vivo NK cell and CD8(+) T cell activation
    • …
    corecore