261 research outputs found

    Cytokine response in cerebrospinal fluid of meningitis patients and outcome associated with pneumococcal serotype

    Get PDF
    Streptococcus pneumoniae causes life-threatening meningitis. Its capsular polysaccharide determines the serotype and influences disease severity but the mechanism is largely unknown. Due to evidence of elevated cytokines levels in the meningeal inflammatory response, we measured 41 cytokines/chemokines and growth factors in cerebrospinal fluid (CSF) samples from 57 South African meningitis patients (collected in the period 2018-2019), with confirmed S. pneumoniae serotypes, using a multiplexed bead-based immunoassay. Based on multivariable Bayesian regression, using serotype 10A as a reference and after adjusting for HIV and age, we found IL-6 concentrations significantly lower in patients infected with serotypes 6D (undetectable) and 23A (1601 pg/ml), IL-8 concentrations significantly higher in those infected with 22A (40,459 pg/ml), 7F (32,400 pg/ml) and 15B/C (6845 pg/ml), and TNFα concentration significantly higher in those infected with serotype 18A (33,097 pg/ml). Although a relatively small number of clinical samples were available for this study and 28% of samples could not be assigned to a definitive serotype, our data suggests 15B/C worthy of monitoring during surveillance as it is associated with in-hospital case fatality and not included in the 13-valent polysaccharide conjugate vaccine, PCV13. Our data provides average CSF concentrations of a range of cytokines and growth factors for 18 different serotypes (14, 19F, 3, 6A, 7F, 19A, 8, 9N, 10A, 12F, 15B/C, 22F, 16F, 23A, 31, 18A, 6D, 22A) to serve as a basis for future studies investigating host-pathogen interaction during pneumococcal meningitis. We note that differences in induction of IL-8 between serotypes may be particularly worthy of future study

    Aetiology of bacterial meningitis in infants aged <90 days : Prospective surveillance in Luanda, Angola

    Get PDF
    Background: Despite effective antibiotics and vaccines, bacterial meningitis (BM) remains one of the leading causes of morbidity and mortality in young infants worldwide. Data from Africa on the aetiology and antibiotic susceptibility are scarce. Objective: To describe the aetiology of BM in Angolan infants Methods: A prospective, observational, single-site study was conducted from February 2016 to October 2017 in the Paediatric Hospital of Luanda. All cerebrospinal fluid samples (CSF) from infants aged Results: Of the 1287 infants, 299 (23%) had confirmed or probable BM. Of the 212 (16%) identified bacterial isolates from CSF, the most common were Klebsiella spp (30 cases), Streptococcus pneumoniae (29 cases), Streptococcus agalactiae (20 cases), Escherichia coli (17 cases), and Staphylococcus aureus (11 cases). A fifth of pneumococci (3/14; 21%) showed decreased susceptibility to penicillin, whereas methicillin-resistant S. aureus (MRSA) was encountered in 4/11 cases (36%). Of the gram-negative isolates, 6/45 (13%) were resistant to gentamicin and 20/58 (34%) were resistant to third-generation cephalosporins. Twenty-four percent (33/135) of the BM cases were fatal, but this is likely an underestimation. Conclusions: BM was common among infantsPeer reviewe

    Conserved Mutations in the Pneumococcal Bacteriocin Transporter Gene, blpA, Result in a Complex Population Consisting of Producers and Cheaters

    Get PDF
    All fully sequenced strains of Streptococcus pneumoniae possess a version of the blp locus, which is responsible for bacteriocin production and immunity. Activation of the blp locus is stimulated by accumulation of the peptide pheromone, BlpC, following its secretion by the ABC transporter, BlpA. The blp locus is characterized by significant diversity in blpC type and in the region of the locus containing putative bacteriocin and immunity genes. In addition, the blpA gene can represent a single large open reading frame or be divided into several smaller fragments due to the presence of frameshift mutations. In this study, we use a collection of strains with blp-dependent inhibition and immunity to define the genetic changes that bring about phenotypic differences in bacteriocin production or immunity. We demonstrate that alterations in blpA, blpC, and bacteriocin/immunity content likely play an important role in competitive interactions between pneumococcal strains. Importantly, strains with a highly conserved frameshift mutation in blpA are unable to secrete bacteriocins or BlpC, but retain the ability to respond to exogenous peptide pheromone produced by cocolonizing strains, stimulating blp-mediated immunity. These “cheater” strains can only coexist with bacteriocin-producing strains that secrete their cognate BlpC and share the same immunity proteins. The variable outcome of these interactions helps to explain the heterogeneity of the blp pheromone, bacteriocin, and immunity protein content

    Meningitis-associated pneumococcal serotype 8, ST 53, strain is hypervirulent in a rat model and has non-haemolytic pneumolysin which can be attenuated by liposomes

    Get PDF
    IntroductionStreptococcus pneumoniae bacteria cause life-threatening invasive pneumococcal disease (IPD), including meningitis. Pneumococci are classified into serotypes, determined by differences in capsular polysaccharide and both serotype and pneumolysin toxin are associated with disease severity. Strains of serotype 8, ST 53, are increasing in prevalence in IPD in several countries.MethodsHere we tested the virulence of such an isolate in a rat model of meningitis in comparison with a serotype 15B and a serotype 14 isolate. All three were isolated from meningitis patients in South Africa in 2019, where serotype 8 is currently the most common serotype in IPD.Results and DiscussionOnly the serotype 8 isolate was hypervirulent causing brain injury and a high mortality rate. It induced a greater inflammatory cytokine response than either the serotype 15B or 14 strain in the rat model and from primary mixed-glia cells isolated from mouse brains. It had the thickest capsule of the three strains and produced non-haemolytic pneumolysin. Pneumolysin-sequestering liposomes reduced the neuroinflammatory cytokine response in vitro indicating that liposomes have the potential to be an effective adjuvant therapy even for hypervirulent pneumococcal strains with non-haemolytic pneumolysin

    Imputing direct and indirect vaccine effectiveness of childhood pneumococcal conjugate vaccine against invasive disease by surveying temporal changes in nasopharyngeal pneumococcal colonization

    Get PDF
    The limited capabilities in most low-middle income countries to study the benefit of pneumococcal conjugate vaccine (PCV) against invasive pneumococcal disease (IPD), calls for alternate strategies to assess this. We used a mathematical model, to predict the direct and indirect effectiveness of PCV by analyzing serotype specific colonization prevalence and IPD incidence prior to and following childhood PCV immunization in South Africa. We analyzed IPD incidence from 2005-2012 and colonization studies undertaken in HIV-uninfected and HIV-infected child-mother dyads from 2007-2009 (pre-PCV era), in 2010 (7-valent PCV era) and 2012 (13-valent PCV era). We compared the model-predicted to observed changes in IPD incidence, stratified by HIV-status in children >3 months to 5 years and also in women aged >18-45 years. We observed reductions in vaccine-serotype colonization and IPD due to vaccine serotypes among children and women after PCV introduction. Using the changes in vaccine-serotype colonization data, the model-predicted changes in vaccine-serotype IPD incidence rates were similar to the observed changes in PCV-unvaccinated children and adults, but not among children <24 months. Surveillance of colonization prior and following PCV use can be used to impute PCVs' indirect associations in unvaccinated age groups, including in high HIV-prevalence settings

    Meningitis-associated pneumococcal serotype 8, ST 53, strain is hypervirulent in a rat model and has non-haemolytic pneumolysin which can be attenuated by liposomes

    Get PDF
    Introduction: Streptococcus pneumoniae bacteria cause life-threatening invasive pneumococcal disease (IPD), including meningitis. Pneumococci are classified into serotypes, determined by differences in capsular polysaccharide and both serotype and pneumolysin toxin are associated with disease severity. Strains of serotype 8, ST 53, are increasing in prevalence in IPD in several countries. Methods: Here we tested the virulence of such an isolate in a rat model of meningitis in comparison with a serotype 15B and a serotype 14 isolate. All three were isolated from meningitis patients in South Africa in 2019, where serotype 8 is currently the most common serotype in IPD. Results and Discussion: Only the serotype 8 isolate was hypervirulent causing brain injury and a high mortality rate. It induced a greater inflammatory cytokine response than either the serotype 15B or 14 strain in the rat model and from primary mixed-glia cells isolated from mouse brains. It had the thickest capsule of the three strains and produced non-haemolytic pneumolysin. Pneumolysin-sequestering liposomes reduced the neuroinflammatory cytokine response in vitro indicating that liposomes have the potential to be an effective adjuvant therapy even for hypervirulent pneumococcal strains with non-haemolytic pneumolysin

    Modeling the impact of COVID-19 nonpharmaceutical interventions on respiratory syncytial virus transmission in South Africa

    Get PDF
    Background: The South African government employed various nonpharmaceutical interventions (NPIs) to reduce the spread of SARS-CoV-2. Surveillance data from South Africa indicates reduced circulation of respiratory syncytial virus (RSV) throughout the 2020–2021 seasons. Here, we use a mechanistic transmission model to project the rebound of RSV in the two subsequent seasons. Methods: We fit an age-structured epidemiological model to hospitalization data from national RSV surveillance in South Africa, allowing for time-varying reduction in RSV transmission during periods of COVID-19 circulation. We apply the model to project the rebound of RSV in the 2022 and 2023 seasons. Results: We projected an early and intense outbreak of RSV in April 2022, with an age shift to older infants (6–23 months old) experiencing a larger portion of severe disease burden than typical. In March 2022, government alerts were issued to prepare the hospital system for this potentially intense outbreak. We then assess the 2022 predictions and project the 2023 season. Model predictions for 2023 indicate that RSV activity has not fully returned to normal, with a projected early and moderately intense wave. We estimate that NPIs reduced RSV transmission between 15% and 50% during periods of COVID-19 circulation. Conclusions: A wide range of NPIs impacted the dynamics of the RSV outbreaks throughout 2020–2023 in regard to timing, magnitude, and age structure, with important implications in a low- and middle-income countries (LMICs) setting where RSV interventions remain limited. More efforts should focus on adapting RSV models to LMIC data to project the impact of upcoming medical interventions for this disease.</p

    TNFAIP3-interacting protein 1 polymorphisms and their association with symptomatic human respiratory syncytial virus infection and bronchiolitis in infants younger than one year from South Africa: A case-control study

    Get PDF
    Objectives: This study analyzed the association of TNFAIP3-interacting protein 1 (TNIP1) polymorphisms with the symptomatic human respiratory syncytial virus (HRSV) infection and bronchiolitis in infants. Methods: A case-control study was conducted involving 129 hospitalized infants with symptomatic HRSV infection (case group) and 161 healthy infants (control group) in South Africa (2016-2018). Six TNIP1 polymorphisms (rs869976, rs4958881, rs73272842, rs3792783, rs17728338, and rs999011) were genotyped. Genetic associations were evaluated using logistic regression adjusted by age and gender. Results: Both rs73272842 G and rs999011 C alleles were associated with reduced odds for symptomatic HRSV infection (adjusted odd ratio [aOR] = 0.68 [95% confidence interval {CI} = 0.48-0.96] and aOR = 0.36 [95% CI = 0.19-0.68], respectively] and bronchiolitis (aOR = 0.71 [95% CI = 0.50-1.00] and aOR = 0.38 [95% CI = 0.22-0.66], respectively). The significance of these associations was validated using the BCa Bootstrap method (P <0.05). The haplotype GC (composed of rs73272842 and rs999011) was associated with reduced odds of symptomatic HRSV infection (aOR = 0.53 [95% CI = 0.37-0.77]) and bronchiolitis (aOR = 0.62 [95% CI = 0.46-0.84]), which were validated by the BCa Bootstrap method (P = 0.002 for both). Conclusion: TNIP1 rs73272842 G allele and rs999011 C allele were associated with reduced odds of symptomatic HRSV infection and the development of bronchiolitis in infants, suggesting that TNIP1 polymorphisms could impact susceptibility to HRSV illness.The study was funded by Poliomyelitis Research Foundation (grant # 19/27 to FKT), South Africa. The study was also funded by the CIBER -Consorcio Centro de Investigación Biomédica en Red- (CB 2021), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea – NextGenerationEU (grant #CB21/13/00044 to SR).S
    corecore