150 research outputs found

    Magneto-x-ray effects in transition-metal alloys

    Get PDF
    We present a theory that combines the relativistic spin-polarized version of the Koringa-Kohn-Rostoker coherent-potential approximation theory and the macroscopic theory of magneto-optical effects enabling us to calculate magneto-x-ray effects from first principles. The theory is illustrated by calculation of Faraday and Kerr rotations and ellipticities for transition-metal alloys

    Free Vibration of Fiber Composite Thin Shells in a Hot Environment

    Get PDF
    Results are presented of parametric studies to assess the effects of various parameters on the free vibration behavior (natural frequencies) of (plus or minus theta)2, angle-ply fiber composite thin shells in a hot environment. These results were obtained by using a three-dimensional finite element structural analysis computer code. The fiber composite shell is assumed to be cylindrical and made from T-300 graphite fibers embedded in an intermediate-modulus high-strength matrix (IMHS). The residual stresses induced into the laminated structure during curing are taken into account. The following parameters are investigated: the length and the thickness of the shell, the fiber orientations, the fiber volume fraction, the temperature profile through the thickness of the laminate and the different ply thicknesses. Results obtained indicate that: the fiber orientations and the length of the laminated shell had significant effect on the natural frequencies. The fiber volume fraction, the laminate thickness and the temperature profile through the shell thickness had a weak effect on the natural frequencies. Finally, the laminates with different ply thicknesses had insignificant influence on the behavior of the vibrated laminated shell

    Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment

    Get PDF
    Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures

    Metal matrix composite analyzer (METCAN) user's manual, version 4.0

    Get PDF
    The Metal Matrix Composite Analyzer (METCAN) is a computer code developed at Lewis Research Center to simulate the high temperature nonlinear behavior of metal matrix composites. An updated version of the METCAN User's Manual is presented. The manual provides the user with a step by step outline of the procedure necessary to run METCAN. The preparation of the input file is demonstrated, and the output files are explained. The sample problems are presented to highlight various features of METCAN. An overview of the geometric conventions, micromechanical unit cell, and the nonlinear constitutive relationships is also provided

    Buckling analysis of laminated thin shells in a hot environment

    Get PDF
    Results are presented of parametric studies to assess the effects of various parameters on the buckling behavior of angle-ply, laminated thin shells in a hot environment. These results were obtained by using a three-dimensional finite element analysis. An angle-ply, laminated thin shell with fiber orientation of (theta/-theta)(sub 2) was subjected to compressive mechanical loads. The laminated thin shell had a cylindrical geometry. The laminate contained T300 graphite fibers embedded in an intermediate-modulus, high-strength (IMHS) matrix. The fiber volume fraction was 55 percent and the moisture content was 2 percent. The residual stresses induced into the laminate structure during the curing were taken into account. Parametric studies were performed to examine the effect on the critical buckling load of the following parameters: cylinder length and thickness, internal hydrostatic pressure, different ply thicknesses, different temperature profiles through the thickness of the structure, and different lay up configurations and fiber volume fractions. In conjunction with these parameters the ply orientation was varied from 0 deg to 90 deg. Seven ply angles were examined: 0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg, and 90 deg. The results show that the ply angle theta and the laminate thickness had significant effects on the critical buckling load. The fiber volume fraction, the fiber orientations, and the internal hydrostatic pressure had important effects on the critical buckling load. The cylinder length had a moderate influence on the buckling load. The thin shell with (theta/-theta)(sub 2) or (theta/-theta)(sub s) angle-ply laminate had better buckling-load performance than the thin shell with (theta)(sub 4) angle-ply laminate. The temperature profiles through the laminate thickness and various laminates with the different ply thicknesses has insignificant effects on the buckling behavior of the thin shells

    Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements

    Get PDF
    The Koringa-Kohn-Rostoker —coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles

    Skeletal muscle mass and body fat in relation to successful ageing of older adults: The multi-national MEDIS study

    Get PDF
    BACKGROUND: The determinants that promote successful ageing still remain unknown. The aim of the present work was to evaluate the role of skeletal muscle mass and body fat percentage (BF%), in the level of successful ageing. METHODS: during 2005-2011, 2663 older (aged 65-100 years) from 21 Mediterranean islands and the rural Mani region (Peloponnesus) of Greece were voluntarily enrolled in the study. Appendicular skeletal muscle mass (ASM), skeletal muscle mass index (SMI) and BF% were calculated using population formulas. Dietary habits, energy intake, expenditure and energy balance were derived throughout standard procedures. A successful ageing index ranging from 0 to 10 was used. RESULTS: The mean ASM mass was 24±6.0kg, the SMI was 0.84±0.21 and the BF% was 44%. Females had lower SMI and higher BF% in comparison with males, respectively [(SMI: 0.66±0.09 vs. 1.03±0.11; BF%: 51% vs. 34%, (p<0.001)]. High successful agers had better rates in ASM (p=0.01), SMI (p<0.001) and BF% (p<0.001), compared with the medium and low successful ones. Changes in SMI [b-coefficient (95% CI):2.14 (1.57 to 2.71)] were positively associated with successful ageing, while changes in BF% [b-coefficient (95% CI): -0.04 (-0.05 to -0.03)] were inversely associated with successful ageing. Results from sensitivity analysis showed that the effects of variations on body composition were consistent, less pronounced in the positive energy balance group and more pronounced among the oldest old. CONCLUSIONS: Body composition changes seem to be associated with lower quality of life in the older adults, as measured through successful ageing
    • …
    corecore