24 research outputs found
Resource Upgrading in Advanced Supercritical Fluid (Supercritical Fluid with Catalyst and Cosolvent): Liquid Fuels from Biomass in Sub and Supercritical Water and Carbohydrate Up-Conversion in Ionic Liquid and Supercritical Fluids Mixtures
Liquid fuels from biomass and up-conversion of biomass in advanced supercritical fluid are reviewed in this chapter. Lignin can be converted into heavy hydrocarbons in subcritical water extraction. Lipid, which is triglyceride, is catalytically converted into straight-chain hydrocarbons of free fatty acid (decarboxylation) formed by hydrolysis. Carbohydrate is also hydrothermally converted into furan ring compound and fatty acids. Protein is converted into amino acids in hydrothermal water and depolymerization of protein is favored with rapid heating and denaturation agency such as alkaline earth metals. Free amino acids are further decomposed into carboxylic acid through deamination and into amine through decarboxylation. To inhibit Maillard reactions, which result in polymerization, the deamination of amino acid at low temperature was favored and a solid catalyst was quite active for deamination of free amino acids at quite low temperature hydrothermal water. Cellulose was dissolved in some ionic liquids with high mass percentages (5–20 wt%) and converted into monomers and useful components such as furan ring compounds and supercritical fluid cosolvent such as hydrothermal water in ionic liquids supported improvement of reaction efficiency. For hydrogenation of biomass, it was confirmed that hydrogen solubility was enhanced with supercritical carbon dioxide and it must be helpful for hydrogen reaction with biomass molecule
Acute inhibition of AMPA receptors by perampanel reduces amyloid β-protein levels by suppressing β-cleavage of APP in Alzheimer's disease models
Hippocampal hyperexcitability is a promising therapeutic target to prevent Aβ deposition in AD since enhanced neuronal activity promotes presynaptic Aβ production and release. This article highlights the potential application of perampanel (PER), an AMPA receptor (AMPAR) antagonist approved for partial seizures, as a therapeutic agent for AD. Using transgenic AD mice combined with in vivo brain microdialysis and primary neurons under oligomeric Aβ-evoked neuronal hyperexcitability, the acute effects of PER on Aβ metabolism were investigated. A single oral administration of PER rapidly decreased ISF Aβ40 and Aβ42 levels in the hippocampus of J20, APP transgenic mice, without affecting the Aβ40 /Aβ42 ratio; 5 mg/kg PER resulted in declines of 20% and 31%, respectively. Moreover, PER-treated J20 manifested a marked decrease in hippocampal APP βCTF levels with increased FL-APP levels. Consistently, acute treatment of PER reduced sAPPβ levels, a direct byproduct of β-cleavage of APP, released to the medium in primary neuronal cultures under oligomeric Aβ-induced neuronal hyperexcitability. To further evaluate the effect of PER on ISF Aβ clearance, a γ-secretase inhibitor was administered to J20 1 h after PER treatment. PER did not influence the elimination of ISF Aβ, indicating that the acute effect of PER is predominantly on Aβ production. In conclusion, acute treatment of PER reduces Aβ production by suppressing β-cleavage of amyloid-β precursor protein effectively, indicating a potential effect of PER against Aβ pathology in AD
A Trial of Nature Experience Activities in University Circle
本稿は、保育を学ぶ学生が自然体験活動を通して森林環境教育や木育活動への理解を深めることをねらいとする学内サークルを立ち上げ、その学生活動を支援するプロジェクト活動の実践報告である。プロジェクト活動の目標は学生のSDGsの意識を向上させることと、保育者としての実践力を高めることである。
その支援活動として、学生部員を対象に、近隣のキャンプ場で自然体験活動を実施した。学生同士のコミュニケーションが活発になったことから、学生自ら積極的に活動に取り組もうとする姿勢が見られるなど、今後の企画・実行するための土台につながると考えられる。さらに、自然物を有効に活用する方法などを身につけることで、自分なりに自然とのかかわり方を学ぶ機会になり、森林環境教育の観点での教育効果があったと認識することができる。
将来的には、学生が保育者になった時のSDGsを意識した自然体験保育の実践も期待している。そのために、自然体験活動の内容や事前事後の学習などを有機的に組み合わせ、活動機会を継続的に設ける必要があるといえる。departmental bulletin pape
Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry
Schizophrenia is one of the major psychiatric disorders, and lipids have focused on the important roles in this disorder. In fact, lipids related to various functions in the brain. Previous studies have indicated that phospholipids, particularly ones containing polyunsaturated fatty acyl residues, are deficient in postmortem brains from patients with schizophrenia. However, due to the difficulties in handling human postmortem brains, particularly the large size and complex structures of the human brain, there is little agreement regarding the qualitative and quantitative abnormalities of phospholipids in brains from patients with schizophrenia, particularly if corresponding brain regions are not used. In this study, to overcome these problems, we employed matrix-assisted laser desorption/ionization imaging mass spectrometry (IMS), enabling direct microregion analysis of phospholipids in the postmortem brain of a patient with schizophrenia via brain sections prepared on glass slides. With integration of traditional histochemical examination, we could analyze regions of interest in the brain at the micrometric level. We found abnormal phospholipid distributions within internal brain structures, namely, the frontal cortex and occipital cortex. IMS revealed abnormal distributions of phosphatidylcholine molecular species particularly in the cortical layer of frontal cortex region. In addition, the combined use of liquid chromatography/electrospray ionization tandem mass spectrometry strengthened the capability for identification of numerous lipid molecular species. Our results are expected to further elucidate various metabolic processes in the neural system
CNVs in Three Psychiatric Disorders
BACKGROUND: We aimed to determine the similarities and differences in the roles of genic and regulatory copy number variations (CNVs) in bipolar disorder (BD), schizophrenia (SCZ), and autism spectrum disorder (ASD).
METHODS: Based on high-resolution CNV data from 8708 Japanese samples, we performed to our knowledge the largest cross-disorder analysis of genic and regulatory CNVs in BD, SCZ, and ASD.
RESULTS: In genic CNVs, we found an increased burden of smaller (500 kb) exonic CNVs in SCZ/ASD. Pathogenic CNVs linked to neurodevelopmental disorders were significantly associated with the risk for each disorder, but BD and SCZ/ASD differed in terms of the effect size (smaller in BD) and subtype distribution of CNVs linked to neurodevelopmental disorders. We identified 3 synaptic genes (DLG2, PCDH15, and ASTN2) as risk factors for BD. Whereas gene set analysis showed that BD-associated pathways were restricted to chromatin biology, SCZ and ASD involved more extensive and similar pathways. Nevertheless, a correlation analysis of gene set results indicated weak but significant pathway similarities between BD and SCZ or ASD (r = 0.25–0.31). In SCZ and ASD, but not BD, CNVs were significantly enriched in enhancers and promoters in brain tissue.
CONCLUSIONS: BD and SCZ/ASD differ in terms of CNV burden, characteristics of CNVs linked to neurodevelopmental disorders, and regulatory CNVs. On the other hand, they have shared molecular mechanisms, including chromatin biology. The BD risk genes identified here could provide insight into the pathogenesis of BD
Pressure-Stabilized Cubic Perovskite Oxyhydride BaScO2H
We report a scandium oxyhydride BaScO2H prepared by solid state reaction under high pressure. Rietveld refinements against powder synchrotron X-ray and neutron diffraction data revealed that BaScO2H adopts the ideal cubic perovskite structure (Pm3?m), where oxide (O2–) and hydride (H–) anions are disordered. 1H nuclear magnetic resonance (NMR) spectroscopy provides a positive chemical shift of about +4.4 ppm, which can be understood by the distance to the nearest (and possibly the next nearest) cation from the H nucleus. A further analysis of the NMR data and calculations based on ab initio random structure searches suggest a partial cis preference in ScO4H2 octahedra. The present oxyhydride, if compositionally or structurally tuned, may become a candidate for H– conductors
Novel frameshift variant of WNT10A in a Japanese patient with hypodontia
Abstract Congenital tooth agenesis is caused by the impairment of crucial genes related to tooth development, such as Wnt signaling pathway genes. Here, we investigated the genetic causes of sporadic congenital tooth agenesis. Exome sequencing, followed by Sanger sequencing, identified a novel single-nucleotide deletion in WNT10A (NC_000002.12(NM_025216.3):c.802del), which was not found in the healthy parents of the patient. Thus, we concluded that the variant was the genetic cause of the patient’s agenesis
Paired analysis of tumor mutation burden for lung adenocarcinoma and associated idiopathic pulmonary fibrosis
Abstract Genetic alterations underlying the development of lung cancer in individuals with idiopathic pulmonary fibrosis (IPF) have remained unclear. To explore whether genetic alterations in IPF tissue contribute to the development of IPF-associated lung cancer, we here evaluated tumor mutation burden (TMB) and somatic variants in 14 paired IPF and tumor samples from patients with IPF-associated lung adenocarcinoma. We also determined TMB for 22 samples of lung adenocarcinoma from patients without IPF. TMB for IPF-associated lung adenocarcinoma was significantly higher than that for matched IPF tissue (median of 2.94 vs. 1.26 mutations/Mb, P = 0.002). Three and 102 somatic variants were detected in IPF and matched lung adenocarcinoma samples, respectively, with only one pair of specimens sharing one somatic variant. TMB for IPF-associated lung adenocarcinoma was similar to that for lung adenocarcinoma samples with driver mutations (median of 2.94 vs. 2.51 mutations/Mb) and lower than that for lung adenocarcinoma samples without known driver mutations (median of 2.94 vs. 5.03 mutations/Mb, P = 0.130) from patients without IPF. Our findings suggest that not only the accumulation of somatic mutations but other factors such as inflammation and oxidative stress might contribute to the development and progression of lung cancer in patients with IPF
Polyoxocationic antimony oxide cluster with acidic protons
正電荷の酸化物クラスターの発見 酸触媒としての高い可能性. 京都大学プレスリリース. 2022-06-18.Scientists serendipitously discover rare cluster compound. 京都大学プレスリリース. 2022-06-18.The success and continued expansion of research on metal-oxo clusters owe largely to their structural richness and wide range of functions. However, while most of them known to date are negatively charged polyoxometalates, there is only a handful of cationic ones, much less functional ones. Here, we show an all-inorganic hydroxyiodide [H₁₀.₇Sb₃₂.₁O₄₄][H₂.₁Sb₂.₁I₈O₆][Sb₀.₇₆I₆]₂·25H₂O (HSbOI), forming a face-centered cubic structure with cationic Sb₃₂O₄₄ clusters and two types of anionic clusters in its interstitial spaces. Although it is submicrometer in size, electron diffraction tomography of HSbOI allowed the construction of the initial structural model, followed by powder Rietveld refinement to reach the final structure. The cationic cluster is characterized by the presence of acidic protons on its surface due to substantial Sb3+ deficiencies, which enables HSbOI to serve as an excellent solid acid catalyst. These results open up a frontier for the exploration and functionalization of cationic metal-oxo clusters containing heavy main group elements