61 research outputs found

    胃癌におけるクローディン4標的化によるシスプラチン化学療法感受性の向上

    Get PDF
    Claudins are major tight-junction proteins that mediate cellular polarity and differentiation. The present study investigated whether the 4D3 antibody to the human CLDN4 extracellular domain (that we previously established) is capable of modulating chemotherapeutic sensitivity in gastric cancer (GC). The results of the present study showed that CLDN4 was overexpressed in 137 of the 192 analyzed GC cases, and that CLDN4 expression was retained in tumors of a lower histological grade (more differentiated), and/or those that were caudal-type homeobox protein 2 (CDX2)-positive, but was reduced in more highly undifferentiated, and CDX2-negative GC cases. The study also compared the synergic effects of combining 4D3 with CDDP treatment and knocking down CLDN4 expression in MKN74 and TMK-1 human GC cells. Co-treatment with 4D3 increased anti-tumor effects of CDDP, whereas CLDN4 knockdown did not. In the TMK-1 cells, non-tight junction CLDN4 associated with integrin β1, increasing stem cell-associated proteins via FAK-c-SRC signals. The anti-tumoral effect of CDDP and 4D3 was examined in a nude mouse subcutaneous tumor model. In the two GC cell lines, concurrent treatment with 4D3 and CDDP synergistically inhibited cell proliferation and increased tumor necrosis and apoptosis to a greater degree than CDDP treatment alone. These findings suggest that 4D3 might increase chemotherapeutic sensitivity by evoking structural disintegration of tight-junction CLDN4 expressed in gastric cancer.博士(医学)・甲第713号・令和元年6月26日Copyright: Nishiguchi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0 https://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    中鎖脂肪酸と糖質の併用摂取は癌関連骨格筋萎縮から保護する

    Get PDF
    Skeletal muscle volume is associated with prognosis of cancer patients. Maintenance of skeletal muscle is an essential concern in cancer treatment. In nutritional intervention, it is important to focus on differences in metabolism between tumor and skeletal muscle. We examined the influence of oral intake of glucose (0%, 10%, 50%) and 2% medium-chain fatty acid (lauric acid, LAA, C12:0) on tumor growth and skeletal muscle atrophy in mouse peritoneal metastasis models using CT26 mouse colon cancer cells and HT29 human colon cancer cells. After 2 weeks of experimental breeding, skeletal muscle and tumor were removed and analyzed. Glucose intake contributed to prevention of skeletal muscle atrophy in a sugar concentration-dependent way and also promoted tumor growth. LAA ingestion elevated the level of skeletal muscle protein and suppressed tumor growth by inducing tumor-selective oxidative stress production. When a combination of glucose and LAA was ingested, skeletal muscle mass increased and tumor growth was suppressed. Our results confirmed that although glucose is an important nutrient for the prevention of skeletal muscle atrophy, it may also foster tumor growth. However, the ingestion of LAA inhibited tumor growth, and its combination with glucose promoted skeletal muscle integrity and function, without stimulating tumor growth. These findings suggest novel strategies for the prevention of skeletal muscle atrophy.博士(医学)・甲第733号・令和2年3月16日© 2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License(https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes

    Body mass index and colorectal cancer risk : A Mendelian randomization study

    Get PDF
    Traditional observational studies have reported a positive association between higher body mass index (BMI) and the risk of colorectal cancer (CRC). However, evidence from other approaches to pursue the causal relationship between BMI and CRC is sparse. A two-sample Mendelian randomization (MR) study was undertaken using 68 single nucleotide polymorphisms (SNPs) from the Japanese genome-wide association study (GWAS) and 654 SNPs from the GWAS catalogue for BMI as sets of instrumental variables. For the analysis of SNP-BMI associations, we undertook a meta-analysis with 36 303 participants in the Japanese Consortium of Genetic Epidemiology studies (J-CGE), comprising normal populations. For the analysis of SNP-CRC associations, we utilized 7636 CRC cases and 37 141 controls from five studies in Japan, and undertook a meta-analysis. Mendelian randomization analysis of inverse-variance weighted method indicated that a one-unit (kg/m2) increase in genetically predicted BMI was associated with an odds ratio of 1.13 (95% confidence interval, 1.06-1.20; P value <.001) for CRC using the set of 68 SNPs, and an odds ratio of 1.07 (1.03-1.11, 0.001) for CRC using the set of 654 SNPs. Sensitivity analyses robustly showed increased odds ratios for CRC for every one-unit increase in genetically predicted BMI. Our MR analyses strongly support the evidence that higher BMI influences the risk of CRC. Although Asians are generally leaner than Europeans and North Americans, avoiding higher BMI seems to be important for the prevention of CRC in Asian populations

    Genetic susceptibility to hepatocellular carcinoma in chromosome 22q13.31, findings of a genome-wide association study.

    Get PDF
    Background and Aim: Chronic hepatitis C virus (HCV) infection, long-term alcohol use, cigarette smoking, and obesity are the major risk factors for hepatocellular carcinoma (HCC) in the United States, but the disease risk varies substantially among individuals with these factors, suggesting host susceptibility to and gene-environment interactions in HCC. To address genetic susceptibility to HCC, we conducted a genome-wide association study (GWAS). Methods: Two case-control studies on HCC were conducted in the United States. DNA samples were genotyped using the Illumian microarray chip with over 710 000 single nucleotide polymorphisms (SNPs). We compared these SNPs between 705 HCC cases and 1455 population controls for their associations with HCC and verified our findings in additional studies. Results: In this GWAS, we found that two SNPs were associated with HCC at Conclusions: SNPs i

    女子大生の咀嚼の実態と心身の各種因子との関係について

    Get PDF
    咀嚼を含めた食行為が女子大生の心身に与える影響を把握するため、マシュマロとチャーハンにおける咀嚼回数の測定並びに、生活習慣および心理状況調査を実施した。また、咀嚼回数の測定と併せて口腔部のサイズや容量、1口の食物投入量、咀嚼数、咀嚼スピード、スプーンの移動回数を測定し、体重や体脂肪量などの各種身体情報の調査も行った。 咀嚼の状況と身体特性との関係性を相関分析により検討したところ、相関関係は確認できなかった。咀嚼の状況と生活習慣との関連の検討において、メタボリックシンドロームに対するリスクと有意な負の相関関係が見られた項目は、スプーン移動回数、チャーハン摂取量、1分あたりの摂取量であった。 以上のように咀嚼の状況と生活習慣および心理状況調査結果との関係については、関連性が示唆される傾向が見られた

    Collaboration in N-th Order Derivative Creation

    No full text
    In derivative creation activity, where new content is created based on existing content, it has become popular for multiple creators to collaborate to create new derivative content. In this paper, we analyze the collaboration of music-related derivative videos on a video sharing service. Specifically, by using 83,496 collaborative videos created by 22,841 creators, we analyze the collaboration from the following two viewpoints: video popularity and creator activity. Our analysis results showed that collaborative videos tend to become more popular than non-collaborative ones, the collaboration is not a one-off activity but a continuous one, and creators who have collaboration experience are active for a longer time than inexperienced creators, etc

    Morphological Evidence for Novel Roles of Microtubules in Macrophage Phagocytosis

    No full text
    Although the phagocytic activity of macrophages has long been studied, the involvement of microtubules in the process is not well understood. In this study, we improved the fixation protocol and revealed a dynamically rearranging microtubule network in macrophages, consisting of a basal meshwork, thick bundles at the cell edge, and astral microtubules. Some astral microtubules extended beneath the cell cortex and continued to form bundles at the cell edge. These microtubule assemblies were mutually exclusive of actin accumulation during membrane ruffling. Although the stabilization of microtubules with paclitaxel did not affect the resting stage of the macrophages, it reduced the phagocytic activity and membrane ruffling of macrophages activated with serum-MAF, which induced rapid phagocytosis. In contrast, the destabilization of microtubules with nocodazole enhanced membrane ruffling and the internalization of phagocytic targets suggesting an inhibitory effect of the microtubule network on the remodeling of the actin network. Meanwhile, the microtubule network was necessary for phagosome maturation. Our detailed analyses of cytoskeletal filaments suggest a phagocytosis control system involving Ca2+ influx, the destabilization of microtubules, and activation of actin network remodeling, followed by the translocation and acidification of phagosomes on the microtubule bundles

    CpG Methylation Changes G-Quadruplex Structures Derived from Gene Promoters and Interaction with VEGF and SP1

    No full text
    G-quadruplex (G4) is a DNA/RNA conformation that consists of two or more G-tetrads resulting from four-guanine bases connected by Hoogsteen-type hydrogen bonds, which is often found in the telomeres of chromatin, as well as in the promoter regions of genes. The function of G4 in the genomic DNA is being elucidated and some G4-protein interactions have been reported; these are believed to play a role in vital cellular functions. In this study, we focused on CpG methylation, a well-known epigenetic modification of the genomic DNA, especially found in the promoter regions. Although many G4-forming sequences within the genomic DNA harbor CpG sites, the relationship between CpG methylation and the binding properties of associated proteins remains unclear. We demonstrated that the binding ability of vascular endothelial growth factor (VEGF) G4 DNA to VEGF165 protein was significantly decreased by CpG methylation. We identified the binding activity of G4 DNA oligonucleotides derived from gene promoter regions to SP1, a transcription factor that interacts with a G4-forming DNA and is also altered by CpG methylation. The effect of methylation on binding affinity was accompanied by changes in G4 structure and/or topology. Therefore, this study suggested that CpG methylation might be involved in protein binding to G4-forming DNA segments for purposes of transcriptional regulation

    A Peptidoglycan Amidase Mutant of Burkholderia insecticola Adapts an L-form-like Shape in the Gut Symbiotic Organ of the Bean Bug Riptortus pedestris

    No full text
    International audienceBacterial cell shapes may be altered by the cell cycle, nutrient availability, environmental stress, and interactions with other organisms. The bean bug Riptortus pedestris possesses a symbiotic bacterium, Burkholderia insecticola, in its midgut crypts. This symbiont is a typical rod-shaped bacterium under in vitro culture conditions, but changes to a spherical shape inside the gut symbiotic organ of the host insect, suggesting the induction of morphological alterations in B. insecticola by host factors. The present study revealed that a deletion mutant of a peptidoglycan amidase gene (amiC), showing a filamentous chain form in vitro, adapted a swollen L-form-like cell shape in midgut crypts. Spatiotemporal observations of the ΔamiC mutant in midgut crypts revealed the induction of swollen cells, particularly prior to the molting of insects. To elucidate the mechanisms underlying in vivo-specific morphological alterations, the symbiont was cultured under 13 different conditions and its cell shape was examined. Swollen cells, similar to symbiont cells in midgut crypts, were induced when the mutant was treated with fosfomycin, an inhibitor of peptidoglycan precursor biosynthesis. Collectively, these results strongly suggest that the Burkholderia symbiont in midgut crypts is under the control of the host insect via a cell wall-attacking agent
    corecore