87 research outputs found
Darwin's small and medium ground finches might have taste preferences, but not for human foods
Urbanization is rapidly changing ecological niches. On the inhabited Galapagos Islands, Darwin's finches consume human-introduced foods preferentially; however, it remains unclear why. Here, we presented pastry with flavour profiles typical of human foods (oily, salty and sweet) to small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis) to test if latent taste preferences might drive the selection of human foods. If human food flavours were consumed more than a neutral or bitter control only at sites with human foods, then we predicted tastes were acquired after urbanization; however, if no site differences were found then this would indicate latent taste preferences. Contrary to both predictions, we found little evidence that human food flavours were preferred compared with control flavours at any site. Instead, finches showed a weak aversion to oily foods, but only at remote (no human foods present) sites. This was further supported by behavioural responses, with beak-wiping occurring more often at remote sites after finches tasted flavours associated with human foods. Our results suggest, therefore, that while Darwin's finches regularly exposed to human foods might have acquired a tolerance to human food flavours, latent taste preferences are unlikely to have played a major role in their dietary response to increased urbanization.Peer reviewe
New 14C Determinations from Lake Suigetsu, Japan:12,000 to 0 Cal BP
Calibration is a fundamental stage of the radiocarbon (14C) dating process if one is to derive meaningful calendar ages from samplesâ 14C measurements. For the first time, the IntCal09 calibration curve (Reimer et al. 2009) provided an internationally ratified calibration data set across almost the complete range (0 to 50,000 cal BP) of the 14C timescale. However, only the last 12,550 cal yr of this record are composed of terrestrial data, leaving approximately three quarters of the 14C timescale necessarily calibrated via less secure, marine records (incorporating assumptions pertaining to the temporally variable âmarine reservoir effectâ). The predominantly annually laminated (varved) sediment profile of Lake Suigetsu, central Japan, offers an ideal opportunity to derive an extended terrestrial record of atmospheric 14C across the entire range of the method, through pairing of 14C measurements of terrestrial plant macrofossil samples (extracted from the sediment) with the independent chronology provided through counting of its annual laminations.
This paper presents new data (182 14C determinations) from the upper (largely non-varved) 15 m of the Lake Suigetsu (SG06) sediment strata. These measurements provide evidence of excellent coherence between the Suigetsu 14C data and the IntCal09 calibration curve across the last ~12,000 cal yr (i.e. the portion of IntCal based entirely on terrestrial data). Such agreement demonstrates that terrestrial plant material picked from the Lake Suigetsu sediment provides a reliable archive of atmospheric 14C, and therefore supports the site as being capable of providing a high-resolution extension to the âwholly terrestrialâ (i.e. non-reservoir-corrected) calibration curve beyond its present 12,550 cal BP limit
A Complete Terrestrial Radiocarbon Record for 11.2 to 52.8 kyr B.P.
Radiocarbon (14C) provides a way to date material that contains carbon with an age up to ~50,000 years and is also an important tracer of the global carbon cycle. However, the lack of a comprehensive record reflecting atmospheric 14C prior to 12.5 thousand years before the present (kyr B.P.) has limited the application of radiocarbon dating of samples from the Last Glacial period. Here, we report 14C results from Lake Suigetsu, Japan (35°35âČN, 135°53âČE), which provide a comprehensive record of terrestrial radiocarbon to the present limit of the 14C method. The time scale we present in this work allows direct comparison of Lake Suigetsu paleoclimatic data with other terrestrial climatic records and gives information on the connection between global atmospheric and regional marine radiocarbon levels
The gut of the finch: uniqueness of the gut microbiome of the GalĂĄpagos vampire finch.
BACKGROUND: Darwin's finches are a clade of 19 species of passerine birds native to the GalĂĄpagos Islands, whose biogeography, specialized beak morphologies, and dietary choices-ranging from seeds to blood-make them a classic example of adaptive radiation. While these iconic birds have been intensely studied, the composition of their gut microbiome and the factors influencing it, including host species, diet, and biogeography, has not yet been explored. RESULTS: We characterized the microbial community associated with 12 species of Darwin's finches using high-throughput 16S rRNA sequencing of fecal samples from 114 individuals across nine islands, including the unusual blood-feeding vampire finch (Geospiza septentrionalis) from Darwin and Wolf Islands. The phylum-level core gut microbiome for Darwin's finches included the Firmicutes, Gammaproteobacteria, and Actinobacteria, with members of the Bacteroidetes at conspicuously low abundance. The gut microbiome was surprisingly well conserved across the diversity of finch species, with one exception-the vampire finch-which harbored bacteria that were either absent or extremely rare in other finches, including Fusobacterium, Cetobacterium, Ureaplasma, Mucispirillum, Campylobacter, and various members of the Clostridia-bacteria known from the guts of carnivorous birds and reptiles. Complementary stable isotope analysis of feathers revealed exceptionally high ÎŽ15N isotope values in the vampire finch, resembling top marine predators. The GalĂĄpagos archipelago is also known for extreme wet and dry seasons, and we observed a significant seasonal shift in the gut microbial community of five additional finch species sampled during both seasons. CONCLUSIONS: This study demonstrates the overall conservatism of the finch gut microbiome over short (<â1Â Ma) divergence timescales, except in the most extreme case of dietary specialization, and elevates the evolutionary importance of seasonal shifts in driving not only species adaptation, but also gut microbiome composition
The gut of the finch: uniqueness of the gut microbiome of the GalĂĄpagos vampire finch
Background: Darwinâs finches are a clade of 19 species of passerine birds native to the GalĂĄpagos Islands, whose biogeography, specialized beak morphologies, and dietary choicesâranging from seeds to bloodâmake them a classic example of adaptive radiation. While these iconic birds have been intensely studied, the composition of their gut microbiome and the factors influencing it, including host species, diet, and biogeography, has not yet been explored.
Results: We characterized the microbial community associated with 12 species of Darwinâs finches using high-throughput 16S rRNA sequencing of fecal samples from 114 individuals across nine islands, including the unusual blood-feeding vampire finch (Geospiza septentrionalis) from Darwin and Wolf Islands. The phylum-level core gut microbiome for Darwinâs finches included the Firmicutes, Gammaproteobacteria, and Actinobacteria, with members of the Bacteroidetes at conspicuously low abundance. The gut microbiome was surprisingly well conserved across the diversity of finch species, with one exceptionâthe vampire finchâwhich harbored bacteria that were either absent or extremely rare in other finches, including Fusobacterium, Cetobacterium, Ureaplasma, Mucispirillum, Campylobacter, and various members of the Clostridiaâbacteria known from the guts of carnivorous birds and reptiles. Complementary stable isotope analysis of feathers revealed exceptionally high ÎŽ15N isotope values in the vampire finch, resembling top marine predators. The GalĂĄpagos archipelago is also known for extreme wet and dry seasons, and we observed a significant seasonal shift in the gut microbial community of five additional finch species sampled during both seasons.
Conclusions: This study demonstrates the overall conservatism of the finch gut microbiome over short (<â1 Ma) divergence timescales, except in the most extreme case of dietary specialization, and elevates the evolutionary importance of seasonal shifts in driving not only species adaptation, but also gut microbiome composition
Ethnic-Racial Socialization in Early Childhood: The Implications of Color-Consciousness and Colorblindness for Prejudice Development
This chapter outlines how early childhood teachers can bring children into conversations surrounding race and racism by drawing on literature on how parents of color discuss these topics. Although educatorsâ practices surrounding race and racism remain largely unexplored, decades of developmental psychological research indicate that parents of color engage in ethnic-racial socialization practices that are beneficial for children (Hughes et al., 2006). The established dimensions of parental ethnic-racial socialization include (1) cultural socialization, or teaching children about their ethnic heritage and instilling ethnic pride; (2) preparation for bias, or teaching children about racism and preparing them to face discrimination; (3) promotion of mistrust, or warning children about the need to distance themselves from other racial groups; and (4) egalitarianism, or emphasizing the similarities between and equality of all races (Hughes et al. 2006). One consideration to take into account from a developmental perspective is that childrenâs level of cognitive development impacts how they interpret messages about race. This chapter draws a link between parental ethnic-racial socialization and extends this body of work to school settings, with a focus on teachers. The ideologies of colorblindness and color-consciousness are discussed throughout
Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis
Background: Colorectal cancer (CRC) is one of the most common malignancies and a leading cause of cancer death worldwide. Most cancer cells display high rates of glycolysis with production of lactic acid, which is then exported to the microenvironment by monocarboxylate transporters (MCTs). The main aim of this study was to evaluate the significance of MCT expression in a comprehensive series of primary CRC cases, lymph node and hepatic metastasis.
Methods: Expressions of MCT1, MCT4, CD147 and GLUT1 were studied in human samples of CRC, lymph node and hepatic metastasis, by immunohistochemistry.
Results: All proteins were overexpressed in primary CRC, lymph node and hepatic metastasis, when compared with non-neoplastic tissue, with exception of MCT1 in lymph node and hepatic metastasis. MCT1 and MCT4 expressions were associated with CD147 and GLUT1 in primary CRC. These markers were associated with clinical pathological features, reflecting the putative role of these metabolism-related proteins in the CRC setting.
Conclusion: These findings provide additional evidence for the pivotal role of MCTs in CRC maintenance and progression, and support the use of MCTs as biomarkers and potential therapeutic targets in primary and metastatic CRC.This work was supported by the Fundação para a CiĂȘncia e a Tecnologia
(FCT) grant ref. PTDC/SAU-FCF/104347/2008, under the scope of âPrograma
Operacional TemĂĄtico Factores de Competitividadeâ (COMPETE) of âQuadro
ComunitĂĄrio de Apoio IIIâ and co-financed by the Fundo Europeu De Desenvolvimento
Regional (FEDER). Ricardo Amorim was recipient of the fellowship
SFRH/BD/98002/2013, from Fundação para a CiĂȘncia e a Tecnologia (FCT
Portugal).info:eu-repo/semantics/publishedVersio
Global urban environmental change drives adaptation in white clover.
Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
- âŠ