4,747 research outputs found

    A new study of shower age distribution in near vertical showers by EAS air shower array

    Get PDF
    The air shower array has been developed since it started operation in 1931. The array covering an area of 900 sq m now incorporates 21 particle density sampling detectors around two muon magnetic spectrographs. The air showers are detected in the size range 10 to the 4th power to 10 to the 6th power particles. A total of 11000 showers has so far been detected. Average values of shower age have been obtained in various shower size ranges to study the dependence of shower age on shower size. The core distance dependence of shower age parameter has also been analyzed for presentation

    Snow cover, snowmelt and runoff in the Himalayan River basins

    Get PDF
    Not withstanding the seasonal vagaries of both rainfall amount and snowcover extent, the Himalayan rivers retain their basic perennial character. However, it is the component of snowmelt yield that accounts for some 60 to 70 percent of the total annual flow volumes from Hamilayan watersheds. On this large hydropotential predominantly depends the temporal performance of hydropower generation and major irrigation projects. The large scale effects of Himalayan snowcover on the hydrologic responses of a few selected catchments in western Himalayas was studied. The antecedent effects of snowcover area on long and short term meltwater yields can best be analyzed by developing appropriate hydrologic models forecasting the pattern of snowmelt as a function of variations in snowcover area. It is hoped that these models would be of practical value in the management of water resources. The predictability of meltwater for the entire snowmelt season was studied, as was the concurrent flow variation in adjacent watersheds, and their hydrologic significance. And the applicability of the Snowmelt-Runoff Model for real time forecast of daily discharges during the major part of the snowmelt season is examined

    Ion-acoustic solitons in warm magnetoplasmas with super-thermal electrons

    Full text link
    In this work, the phenomenon of formation of localised electrostatic waves (ESW) or soliton is considered in a warm magnetoplasma with the possibility of non-thermal electron distribution. The parameter regime considered here is relevant in case of magnetospheric plasmas. We show that deviation from a usual relaxed Maxwellian distribution of the electron population has a significant bearing in the allowed parameter regime, where these ESWs can be found. We further consider the presence of more than one electron temperature, which is inspired by recent space-based observations[key-2].Comment: 10 pages, 5 figure

    Hybrid fuzzy particle swarm optimization approach for reactive power optimization

    Get PDF
    This paper presents a new approach to the optimal reactive power planning based on fuzzy logic and particle swarm optimization (PSO). The objectives are to minimize real power loss and to improve the voltage profile of a given interconnected power system. Transmission loss is expressed in terms of voltage increments by relating the control variables i.e. reactive var generations by the generators, tap positions of transformers and reactive power injections by the shunt capacitors. The objective function and the constraints are modeled by fuzzy sets. A term ‘sensitivity’ at each bus is defined which depends on variation of real power loss with respect to the voltage at that bus. Based on the Fuzzy membership values of the sensitivity, corrective action at a particular bus is taken i.e. shunt capacitors are installed at the candidate buses based on real power loss and sets of solution. Then, PSO is applied to get final solution. PSO is used for optimal setting of transformer tap positions and reactive generations of generators. The solutions obtained by this method is compared with the solutions obtained by other evolutionary algorithms like genetic algorithm (GA), differential evolution (DE) and particle swarm optimization (PSO)

    Characterization of finger millet [Eleusine coracana (L.) Gaertn.] germplasm for morphological parameters under field conditions

    Get PDF
    The trial was conducted at the research block of Crop Improvement, GBPUAT, Hill Campus, Ranichauri using randomized block design (RBD) to characterize finger millet germplasm for morphological characters viz., plant height, flag leaf length, number of tiller plant-1, number of finger ear-1, ear length, no. of grain finger-1, no. of grain ear-1 and grain yield plant-1. Among all germplasms, number of finger ear-1, number of grain finger-1 and grain yield plant-1(g) had recorded highest in VL 149 which were 9.96, 150.66, 2.63 g respectively. The germplasm GEC 1406 attained lowest plant height (75.89 cm), GEC 961 had recorded higher flag leaf length (40.96 cm), GEC 268 had recorded maximum number of tiller plant-1 (3.30), GEC 199 had recorded higher ear length (9.20 cm), GEC 1044 had recorded maximum number of grain ear-1 (663) among all germplasm of finger millet. This study is helpful to identify superior germplasm so they can be used for further finger millet crop improvement programs

    Time domain study of frequency-power correlation in spin-torque oscillators

    Full text link
    This paper describes a numerical experiment, based on full micromagnetic simulations of current-driven magnetization dynamics in nanoscale spin valves, to identify the origins of spectral linewidth broadening in spin torque oscillators. Our numerical results show two qualitatively different regimes of magnetization dynamics at zero temperature: regular (single-mode precessional dynamics) and chaotic. In the regular regime, the dependence of the oscillator integrated power on frequency is linear, and consequently the dynamics is well described by the analytical theory of current-driven magnetization dynamics for moderate amplitudes of oscillations. We observe that for higher oscillator amplitudes, the functional dependence of the oscillator integrated power as a function of frequency is not a single-valued function and can be described numerically via introduction of nonlinear oscillator power. For a range of currents in the regular regime, the oscillator spectral linewidth is a linear function of temperature. In the chaotic regime found at large current values, the linewidth is not described by the analytical theory. In this regime we observe the oscillator linewidth broadening, which originates from sudden jumps of frequency of the oscillator arising from random domain wall nucleation and propagation through the sample. This intermittent behavior is revealed through a wavelet analysis that gives superior description of the frequency jumps compared to several other techniques.Comment: 11 pages, 4 figures to appear in PR

    Sex differences in cardiovascular responses to orthostatic challenge in healthy older persons: A pilot study

    Get PDF
    Background Premenopausal women show a higher incidence of orthostatic hypotension than age-matched men, but there are limited data available on sex differences in cardiovascular responses to orthostatic challenge in healthy older persons. We investigated sex differences in hemodynamic and autonomic responses to orthostatic challenge in healthy older males and females. Materials and methods Fourteen older healthy women and 10 age-matched men performed a sit-to-stand test (5 min of sitting followed by 5 min of standing). A Task Force® Monitor continuously measured the following beat-to-beat hemodynamic parameters: heart rate, systolic blood pressure, diastolic blood pressure, mean blood pressure, stroke index, cardiac index, and total peripheral resistance index. Cardiac autonomic activity, low-frequency (LF: 0.04–0.15 Hz) normalized (LFnuRRI) and high-frequency (HF: 0.15–0.4 Hz) normalized (HFnuRRI) components, and the ratio between LF and HF power (LF/HF) were calculated using power spectral analysis of heart rate variability. Results Across all hemodynamic parameters, there were no significant differences between the sexes at baseline and during standing. LFnuRRI (median: 70.2 vs. 52.3, p < 0.05) and LF/HF ratio (median: 2.4 vs. 1.1, p < 0.05) were significantly higher, whereas HFnuRRI (median: 29.8 vs. 47.7, p < 0.05) was lower among women at baseline. All other heart rate variability measures did not differ between the sexes. Conclusions The data indicate that older women showed higher sympathetic and lower parasympathetic activity at rest compared to age-matched men. These results are contradictory to the observations from previous studies, which showed a reduced sympathetic and enhanced parasympathetic activity in women in all ages. Further studies are required to determine the underlying mechanisms contributing to higher incidence of orthostatic hypotension in older females

    Nanodot to Nanowire: A strain-driven shape transition in self-organized endotaxial CoSi2 on Si (100)

    Full text link
    We report a phenomenon of strain-driven shape transition in the growth of nanoscale self-organized endotaxial CoSi2 islands on Si (100) substrates. Small square shaped islands as small as 15\times15 nm2 have been observed. Islands grow in the square shape following the four fold symmetry of the Si (100) substrate, up to a critical size of 67 \times 67 nm2. A shape transition takes place at this critical size. Larger islands adopt a rectangular shape with ever increasing length and the width decreasing to an asymptotic value of ~25 nm. This produces long wires of nearly constant width.We have observed nanowire islands with aspect ratios as large as ~ 20:1. The long nanowire heterostructures grow partly above (~ 3 nm) the surface, but mostly into (~17 nm) the Si substrate. These self-organized nanostructures behave as nanoscale Schottky diodes. They may be useful in Si-nanofabrication and find potential application in constructing nano devices.Comment: 9 pages, 7 figure

    Epitaxial Growth of the Diluted Magnetic Semiconductors CryGe1-y and CryMnxGe1-x-y

    Full text link
    We report the epitaxial growth of CryGe1-y and CryMnxGe1-x-y(001) thin films on GaAs(001), describe the structural and transport properties, and compare the measured magnetic properties with those predicted by theory. The samples are strongly p-type, and hole densities increase with Cr concentration. The CryGe1-y system remains paramagnetic for the growth conditions and low Cr concentrations employed (y < 0.04), consistent with density functional theory predictions. Addition of Cr into the ferromagnetic semiconductor MnxGe1-x host systematically reduces the Curie temperature and total magnetization.Comment: 4 pages, 4 figures, submitted to Applied Physics Letter

    Bound states of edge dislocations: The quantum dipole problem in two dimensions

    Full text link
    We investigate bound state solutions of the 2D Schr\"odinger equation with a dipole potential originating from the elastic effects of a single edge dislocation. The knowledge of these states could be useful for understanding a wide variety of physical systems, including superfluid behavior along dislocations in solid 4^4He. We present a review of the results obtained by previous workers together with an improved variational estimate of the ground state energy. We then numerically solve the eigenvalue problem and calculate the energy spectrum. In our dimensionless units, we find a ground state energy of -0.139, which is lower than any previous estimate. We also make successful contact with the behavior of the energy spectrum as derived from semiclassical considerations.Comment: 6 pages, 3 figures, submitted to PR
    • …
    corecore