20 research outputs found

    Personalized Longitudinal Assessment of Multiple Sclerosis Using Smartphones

    Full text link
    Personalized longitudinal disease assessment is central to quickly diagnosing, appropriately managing, and optimally adapting the therapeutic strategy of multiple sclerosis (MS). It is also important for identifying the idiosyncratic subject-specific disease profiles. Here, we design a novel longitudinal model to map individual disease trajectories in an automated way using sensor data that may contain missing values. First, we collect digital measurements related to gait and balance, and upper extremity functions using sensor-based assessments administered on a smartphone. Next, we treat missing data via imputation. We then discover potential markers of MS by employing a generalized estimation equation. Subsequently, parameters learned from multiple training datasets are ensembled to form a simple, unified longitudinal predictive model to forecast MS over time in previously unseen people with MS. To mitigate potential underestimation for individuals with severe disease scores, the final model incorporates additional subject-specific fine-tuning using data from the first day. The results show that the proposed model is promising to achieve personalized longitudinal MS assessment; they also suggest that features related to gait and balance as well as upper extremity function, remotely collected from sensor-based assessments, may be useful digital markers for predicting MS over time

    U-turn speed is a valid and reliable smartphone-based measure of multiple sclerosis-related gait and balance impairment

    Get PDF
    Background: People living with multiple sclerosis (MS) experience impairments in gait and mobility, that are not fully captured with manually timed walking tests or rating scales administered during periodic clinical visits. We have developed a smartphone-based assessment of ambulation performance, the 5 U-Turn Test (5UTT), a quantitative self-administered test of U-turn ability while walking, for people with MS (PwMS). Research question: What is the test-retest reliability and concurrent validity of U-turn speed, an unsupervised self-assessment of gait and balance impairment, measured using a body-worn smartphone during the 5UTT? Methods: 76 PwMS and 25 healthy controls (HCs) participated in a cross-sectional non-randomised interventional feasibility study. The 5UTT was self-administered daily and the median U-turn speed, measured during a 14-day session, was compared against existing validated in-clinic measures of MS-related disability. Results: U-turn speed, measured during a 14-day session from the 5UTT, demonstrated good-to-excellent test-retest reliability in PwMS alone and combined with HCs (intraclass correlation coefficient [ICC] = 0.87 [95 % CI: 0.80-0.92]) and moderate-to-excellent reliability in HCs alone (ICC = 0.88 [95 % CI: 0.69-0.96]). U-turn speed was significantly correlated with in-clinic measures of walking speed, physical fatigue, ambulation impairment, overall MS-related disability and patients' self-perception of quality of life, at baseline, Week 12 and Week 24. The minimal detectable change of the U-turn speed from the 5UTT was low (19.42 %) in PwMS and indicates a good precision of this measurement tool when compared with conventional in-clinic measures of walking performance. Significance: The frequent self-assessment of turn speed, as an outcome measure from a smartphone-based U-turn test, may represent an ecologically valid digital solution to remotely and reliably monitor gait and balance impairment in a home environment during MS clinical trials and practice

    A Remote Digital Monitoring Platform to Assess Cognitive and Motor Symptoms in Huntington Disease: Cross-sectional Validation Study

    Get PDF
    BACKGROUND: Remote monitoring of Huntington disease (HD) signs and symptoms using digital technologies may enhance early clinical diagnosis and tracking of disease progression, guide treatment decisions, and monitor response to disease-modifying agents. Several recent studies in neurodegenerative diseases have demonstrated the feasibility of digital symptom monitoring. OBJECTIVE: The aim of this study was to evaluate a novel smartwatch- and smartphone-based digital monitoring platform to remotely monitor signs and symptoms of HD. METHODS: This analysis aimed to determine the feasibility and reliability of the Roche HD Digital Monitoring Platform over a 4-week period and cross-sectional validity over a 2-week interval. Key criteria assessed were feasibility, evaluated by adherence and quality control failure rates; test-retest reliability; known-groups validity; and convergent validity of sensor-based measures with existing clinical measures. Data from 3 studies were used: the predrug screening phase of an open-label extension study evaluating tominersen (NCT03342053) and 2 untreated cohorts-the HD Natural History Study (NCT03664804) and the Digital-HD study. Across these studies, controls (n=20) and individuals with premanifest (n=20) or manifest (n=179) HD completed 6 motor and 2 cognitive tests at home and in the clinic. RESULTS: Participants in the open-label extension study, the HD Natural History Study, and the Digital-HD study completed 89.95% (1164/1294), 72.01% (2025/2812), and 68.98% (1454/2108) of the active tests, respectively. All sensor-based features showed good to excellent test-retest reliability (intraclass correlation coefficient 0.89-0.98) and generally low quality control failure rates. Good overall convergent validity of sensor-derived features to Unified HD Rating Scale outcomes and good overall known-groups validity among controls, premanifest, and manifest participants were observed. Among participants with manifest HD, the digital cognitive tests demonstrated the strongest correlations with analogous in-clinic tests (Pearson correlation coefficient 0.79-0.90). CONCLUSIONS: These results show the potential of the HD Digital Monitoring Platform to provide reliable, valid, continuous remote monitoring of HD symptoms, facilitating the evaluation of novel treatments and enhanced clinical monitoring and care for individuals with HD

    Preliminary validity of the Draw a Shape Test for upper extremity assessment in multiple sclerosis

    Get PDF
    Objective To validate the smartphone sensor-based Draw a Shape Test - a part of the Floodlight Proof-of-Concept app for remotely assessing multiple sclerosis-related upper extremity impairment by tracing six different shapes. Methods People with multiple sclerosis, classified functionally normal/abnormal via their Nine-Hole Peg Test time, and healthy controls participated in a 24-week, nonrandomized study. Spatial (trace accuracy), temporal (mean and variability in linear, angular, and radial drawing velocities, and dwell time ratio), and spatiotemporal features (trace celerity) were cross-sectionally analyzed for correlation with standard clinical and brain magnetic resonance imaging (normalized brain volume and total lesion volume) disease burden measures, and for capacity to differentiate people with multiple sclerosis from healthy controls. Results Data from 69 people with multiple sclerosis and 18 healthy controls were analyzed. Trace accuracy (all shapes), linear velocity variability (circle, figure-of-8, spiral shapes), and radial velocity variability (spiral shape) had a mostly fair/moderate-to-good correlation (|r| = 0.14-0.66) with all disease burden measures. Trace celerity also had mostly fair/moderate-to-good correlation (|r| = 0.18-0.41) with Nine-Hole Peg Test performance, cerebellar functional system score, and brain magnetic resonance imaging. Furthermore, partial correlation analysis related these results to motor impairment. People with multiple sclerosis showed greater drawing velocity variability, though slower mean velocity, than healthy controls. Linear velocity (spiral shape) and angular velocity (circle shape) potentially differentiate functionally normal people with multiple sclerosis from healthy controls. Interpretation The Draw a Shape Test objectively assesses upper extremity impairment and correlates with all disease burden measures, thus aiding multiple sclerosis-related upper extremity impairment characterization

    Adherence and satisfaction of smartphone- And smartwatch-based remote active testing and passive monitoring in people with multiple sclerosis : Nonrandomized interventional feasibility study

    Get PDF
    Background: Current clinical assessments of people with multiple sclerosis are episodic and may miss critical features of functional fluctuations between visits. Objective: The goal of the research was to assess the feasibility of remote active testing and passive monitoring using smartphones and smartwatch technology in people with multiple sclerosis with respect to adherence and satisfaction with the FLOODLIGHT test battery. Methods: People with multiple sclerosis (aged 20 to 57 years; Expanded Disability Status Scale 0-5.5; n=76) and healthy controls (n=25) performed the FLOODLIGHT test battery, comprising active tests (daily, weekly, every two weeks, or on demand) and passive monitoring (sensor-based gait and mobility) for 24 weeks using a smartphone and smartwatch. The primary analysis assessed adherence (proportion of weeks with at least 3 days of completed testing and 4 hours per day passive monitoring) and questionnaire-based satisfaction. In-clinic assessments (clinical and magnetic resonance imaging) were performed. Results: People with multiple sclerosis showed 70% (16.68/24 weeks) adherence to active tests and 79% (18.89/24 weeks) to passive monitoring; satisfaction score was on average 73.7 out of 100. Neither adherence nor satisfaction was associated with specific population characteristics. Test-battery assessments had an at least acceptable impact on daily activities in over 80% (61/72) of people with multiple sclerosis. Conclusions: People with multiple sclerosis were engaged and satisfied with the FLOODLIGHT test battery. FLOODLIGHT sensor-based measures may enable continuous assessment of multiple sclerosis disease in clinical trials and real-world settings

    In silico DNA-binding and rational design of ruthenium-arene anticancer drugs

    No full text
    Organometallic ruthenium(II)-arene (RA) antitumour compounds of the general type [Ru(II)(η6-arene)(X)2(pta)], RA-pta, and [Ru(II)(η6-arene)X(en)], RA-en, (X=leaving group; pta=1,3,5-triaza-7-phosphaadamantane, en=ethylenediamine) have been investigated computationally. The main focus has been i.e. the hydrolysis properties, ligand exchange reactions, binding to DNA and the analysis of the resulting structural perturbations. The goal of this thesis was to elucidate key steps in the reactivity of the above drugs that are not readily accessible by experimental techniques. The methodologies employed cover tailor made force fields in classical molecular dynamics (MD), density functional theory (DFT) MD simulations in implicit and explicit solvent as well as combined classical/quantum (QM/MM) MD simulations. For RA-pta compounds, binding energies between the metal centres and the surrounding ligands were calculated. The calculated energies rationalize the experimentally observed tendencies for arene loss, and show that the pta ligands are relatively strongly bound. Exchange of metal centre, methylation or protonation of the pta-ligand, or change of the arene result in significant differences in the metal-arene binding energies while leaving the metalphosphine bond strength essentially unchanged. Significantly lower binding energies and reduced hapticity are predicted for the exchange of arene by nucleobases. The latter show higher binding energies for nitrogen π-bonding than for p-bonding. No influence on the ruthenium-arene interaction was observed for RA-pta complexes bearing arenes with functionalized side chains. A combined DFT/continuum electrostatics approach has been used to estimate the protonation states and absolute pKa values of a series of RA-pta compounds and their hydrolysis products. Our results suggest that the selective in vivo activity towards cancer cells and the observed pH dependent DNA damage is due to a pH dependent activation/deactivation mechanism. In the context of rational drug design, it is hypothesised that analogues with fluorinated arene rings should result in improved selectivity towards hypoxic cancer cells. For RA-en complexes, we rationalized the chemoselectivity towards guanine. The calculated DFT binding energies for the three investigated nucleobases (G, A, C) decreases in the order G(N7) >> C(O2) ∌ C(N3) > A(N7) > G(O6) > OH2. The G(N7) complex is the most stable product due to a C6=O-HNen hydrogen bond while the corresponding C6-NH2-HNen interaction in adenine is repulsive. A study of the reaction of [(η6-benzene)Ru(en)(OH2)]2+ (1) towards the nucleobases G, A and C reveals a strong preference for a formation of an H-bonded cis vs. trans reactant adduct. Only guanine can form a thermally stable trans reactant adduct. The potential reaction sites of adenine and cytosine might loose their nucleophilicity by protonation while simultaneously the aqua leaving group of 1 is converted into an unreactive hydroxo ligand. For the reaction of 1 with guanine three different reaction pathways were identified, however, a "direct trans" reaction pathway is probably the most biologically relevant. Using classical and QM/MM MD we showed that both investigated ruthenium compounds, RA-pta and RA-en, can bind to the major groove of duplex DNA and are stable in this position. The DNA is highly flexible, adapts very fast and widens the major groove to accommodate the ruthenium complex. The local and global structural changes of the DNA (e.g. bending towards the major groove) observed for the RA-pta series are similar to those reported for cisplatin. A severe perturbation of the Watson-Crick base pairing adjacent to the binding site of RA-en was observed that can be linked to recent experimental results. Finally, a tailor made force field for RA-en was derived from our QM/MM trajectories using a force matching approach

    Remote Digital Biomarker Monitoring Bringing a smartphonebased diagnostic test for Parkinson's Disease progression into an interventional trial

    No full text
    <p>In clinical research objective, automated and high frequency measures of disease progression are hard to come by. Traditional physicianled tests are only done periodically, missing the fluctuations of disease activity that strongly affect patient's quality of life. They also lack the objectivity that is so important when developing medicines. By providing patients with mobile sensors they carry day in and day out to conduct tests and capture the data, we are addressing this need.</p> <p>We designed a custom Android App asking patients to complete six “Active Tests” on a daily basis, wherever they are. After completing the Active Tests, patients will then pop their phone in their pockets and carry it around with them throughout the day. This is what we call “Passive Monitoring”.</p> <p>We have established an end to end approach and technology platform with great potential. Our experience will give other clinical studies the confidence that we can bring the required software and workflows to the clinic. Compliance and ethics hurdles have been cleared and investigators trained. We are already gaining experience with patient uptake and are developing the necessary data analysis techniques. Interpretation of mobile sensor data might soon replace traditional assessments.</p

    Binding of organoruthenium anticancer drugs to DNA

    No full text
    Organoruthenium compds. have emerged as promising novel anticancer agents but very little is known about their mol. mechanism of action. Here, we present classical and mixed QM/MM first-principles MD simulations of two ruthenium(II) compds. and their binding to DNA. [on SciFinder (R)

    Rational design of organo-ruthenium anticancer compounds

    Get PDF
    Organometallic ruthenium(II)-arene complexes are currently attracting increasing interest as anticancer compds. with the potential to overcome drawbacks of traditional drugs like cisplatin with respect to resistance, selectivity, and toxicity. Rational design of new potential pharmaceutical compds. requires a detailed understanding of structure-property relationships at an at. level. We performed in vacuo d. functional theory (DFT) calcns., classical MD, and mixed QM/MM Car-Parrinello MD explicit solvent simulations to rationalize the binding mode of two series of anticancer ruthenium(II) arene complexes to double-stranded DNA (dsDNA). Binding energies between the metal centers and the surrounding ligands as well as proton affinities were calcd. using DFT. Our results support a pH-dependent mechanism for the activity of the RAPTA [Ru(h6-arene)X2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane) compds. Adducts of the bifunctional RAPTA and the monofunctional [Ru(h6-p-cymene)Xen]+ series of compds. with the DNA sequence d(CCTCTG*G*TCTCC)/d(GGAGACCAGAGG), where G* are guanosine bases that bind to the ruthenium compds. through their N(7) atom, have been investigated. The resulting binding sites were characterized in QM/MM mol. dynamics simulations showing that DNA can easily adapt to accommodate the ruthenium compds. [on SciFinder (R)
    corecore