211 research outputs found

    The Amusic Brain: Lost in Music, but Not in Space

    Get PDF
    Congenital amusia is a neurogenetic disorder of music processing that is currently ascribed to a deficit in pitch processing. A recent study challenges this view and claims the disorder might arise as a consequence of a general spatial-processing deficit. Here, we assessed spatial processing abilities in two independent samples of individuals with congenital amusia by using line bisection tasks (Experiment 1) and a mental rotation task (Experiment 2). Both amusics and controls showed the classical spatial effects on bisection performance and on mental rotation performance, and amusics and controls did not differ from each other. These results indicate that the neurocognitive impairment of congenital amusia does not affect the processing of space

    Evolution of severe sleep-wake cycle disturbances following traumatic brain injury: a case study in both acute and subacute phases post-injury

    Get PDF
    Abstract Background Sleep-wake disturbances are frequently reported following traumatic brain injury (TBI), but they remain poorly documented in the acute stage of injury. Little is known about their origin and evolution. Case presentation This study presents the case of a patient in the acute phase of a severe TBI. The patient was injured at work when falling 12 m into a mine and was hospitalized in the regular wards of a level I trauma centre. From days 31 to 45 post-injury, once he had reached a level of medical stability and continuous analgosedation had been ceased, his sleep-wake cycle was monitored using actigraphy. Results showed significant sleep-wake disturbances and severe sleep deprivation. Indeed, the patient had an average nighttime sleep efficiency of 32.7 ± 15.4 %, and only an average of 4.8 ± 1.3 h of sleep per 24-h period. After hospital discharge to the rehabilitation centre, where he remained for 5 days, the patient was readmitted to the same neurological unit for paranoid delusions. During his second hospital stay, actigraphy recordings resumed from days 69 to 75 post-injury. A major improvement in his sleep-wake cycle was observed during this second stay, with an average nighttime sleep efficiency of 96.3 ± 0.9 % and an average of 14.1 ± 0.9 h of sleep per 24-h period. Conclusion This study is the first to extensively document sleep-wake disturbances in both the acute and subacute phases of severe TBI. Results show that prolonged sleep deprivation can be observed after TBI, and suggest that the hospital environment only partially contributes to sleep-wake disturbances. Continuous actigraphic monitoring may prove to be a useful clinical tool in the monitoring of patients hospitalized after severe TBI in order to detect severe sleep deprivation requiring intervention. The direct impact of sleep-wake disturbances on physiological and cognitive recovery is not well understood within this population, but is worth investigating and improving

    Evolution of severe sleep-wake cycle disturbances following traumatic brain injury: a case study in both acute and subacute phases post-injury.

    Get PDF
    BACKGROUND: Sleep-wake disturbances are frequently reported following traumatic brain injury (TBI), but they remain poorly documented in the acute stage of injury. Little is known about their origin and evolution. CASE PRESENTATION: This study presents the case of a patient in the acute phase of a severe TBI. The patient was injured at work when falling 12 m into a mine and was hospitalized in the regular wards of a level I trauma centre. From days 31 to 45 post-injury, once he had reached a level of medical stability and continuous analgosedation had been ceased, his sleep-wake cycle was monitored using actigraphy. Results showed significant sleep-wake disturbances and severe sleep deprivation. Indeed, the patient had an average nighttime sleep efficiency of 32.7 ± 15.4 %, and only an average of 4.8 ± 1.3 h of sleep per 24-h period. After hospital discharge to the rehabilitation centre, where he remained for 5 days, the patient was readmitted to the same neurological unit for paranoid delusions. During his second hospital stay, actigraphy recordings resumed from days 69 to 75 post-injury. A major improvement in his sleep-wake cycle was observed during this second stay, with an average nighttime sleep efficiency of 96.3 ± 0.9 % and an average of 14.1 ± 0.9 h of sleep per 24-h period. CONCLUSION: This study is the first to extensively document sleep-wake disturbances in both the acute and subacute phases of severe TBI. Results show that prolonged sleep deprivation can be observed after TBI, and suggest that the hospital environment only partially contributes to sleep-wake disturbances. Continuous actigraphic monitoring may prove to be a useful clinical tool in the monitoring of patients hospitalized after severe TBI in order to detect severe sleep deprivation requiring intervention. The direct impact of sleep-wake disturbances on physiological and cognitive recovery is not well understood within this population, but is worth investigating and improving

    Daniel Brottier: Misionero Espiritano 1876-1936

    Get PDF
    Indice Presentacion (p.3) 1. Visita A Auteuil, Alphonese Gilbert (p.5) 2. Vida Y Obra Del Padre Brottier, Jean Gosselin (p.9) 3. El Corazon De Auteuil, Gabriel David (p.27) 4. Tras Las Huellas Del Ven, Libermann, A. Gilbert (p.41) 5. La Gracia Se Derramo En Tus Labios, F. Lopez (p.65) 6. El Espiritano, Marcel Martin (p.91) 7. Epilogo, Myles Fay (p.95)https://dsc.duq.edu/spiritan-books/1021/thumbnail.jp

    Brain white matter damage and its association with neuronal synchrony during sleep

    Full text link
    The restorative function of sleep partly relies on its ability to deeply synchronize cerebral networks to create large slow oscillations observable with EEG. However, whether a brain can properly synchronize and produce a restorative sleep when it undergoes massive and widespread white matter damage is unknown. Here, we answer this question by testing 23 patients with various levels of white matter damage secondary to moderate to severe traumatic brain injuries (ages 18–56; 17 males, six females, 11–39 months post-injury) and compared them to 27 healthy subjects of similar age and sex. We used MRI and diffusion tensor imaging metrics (e.g. fractional anisotropy as well as mean, axial and radial diffusivities) to characterize voxel-wise white matter damage. We measured the following slow wave characteristics for all slow waves detected in N2 and N3 sleep stages: peak-to-peak amplitude, negative-to-positive slope, negative and positive phase durations, oscillation frequency, and slow wave density. Correlation analyses were performed in traumatic brain injury and control participants separately, with age as a covariate. Contrary to our hypotheses, we found that greater white matter damage mainly over the frontal and temporal brain regions was strongly correlated with a pattern of higher neuronal synchrony characterized by slow waves of larger amplitudes and steeper negative-to-positive slopes during non-rapid eye movement sleep. The same pattern of associations with white matter damage was also observed with markers of high homeostatic sleep pressure. More specifically, higher white matter damage was associated with higher slow-wave activity power, as well as with more severe complaints of cognitive fatigue. These associations between white matter damage and sleep were found only in our traumatic brain injured participants, with no such correlation in controls. Our results suggest that, contrary to previous observations in healthy controls, white matter damage does not prevent the expected high cerebral synchrony during sleep. Moreover, our observations challenge the current line of hypotheses that white matter microstructure deterioration reduces cerebral synchrony during sleep. Our results showed that the relationship between white matter and the brain’s ability to synchronize during sleep is neither linear nor simple

    Visual fixation in the intensive care unit: a strong predictor of post-traumatic amnesia and long-term recovery after moderate-to-severe traumatic brain injury

    Full text link
    Objective: We examined whether visual fixation at 24h of intensive care unit (ICU) admission is superior to the initial Glasgow Coma Scale (GCS) score to predict PTA duration and long-term TBI recovery. Design: Two-phase cohort study. Setting: Level I trauma ICU. Patients: Moderate-to-severe TBI discharged alive between 2010-2013. Interventions: None. Measurements and Main Results: Presence/absence of visual fixation at 24h of ICU-admission was determined through standard behavioral assessments in 181 TBI patients and compared to the GCS score to predict PTA duration during hospitalization (Phase 1) and performance on the Glasgow Outcome Scale-Extended (GOS-E) 10-40 months after (n=144; Phase 2a). A subgroup also completed a visual attention task (n=35; Phase 2b) and brain magnetic resonance imaging post-TBI (n=23; Phase 2c). Presence/absence of visual fixation at 24h of ICU-admission showed a sensitivity of 84%, a specificity of 82% and an AUC of 0.87 for the prediction of PTA duration. Visual fixation (AUC=0.85) was also found as performant as PTA (AUC=0.81; difference-between-AUC=0.04; 95%CI:-0.03-0.116; p=0.28) for the prediction of GOS-E scores. Conversely, the GCS score was a poor predictor of both PTA and GOS-E. Even when controlling for age/medication/CT scan findings, fixation remained a significant predictor of GOS-E scores (=-0.29, p<0.05). Poorer attention performance and increased regional brain volume deficits were also observed in participants who could not fixate 24h following ICU-admission versus those who could. Conclusions: Visual fixation within 24h of ICU-admission could be as performant as PTA for predicting TBI recovery, introducing a new variable of interest in TBI outcome research

    Sleep spindles are resilient to extensive white matter deterioration

    Full text link
    Sleep spindles are an essential part of non-rapid eye movement sleep, notably involved in sleep consolidation, cognition, learning and memory. These oscillatory waves depend on an interaction loop between the thalamus and the cortex, which relies on a structural backbone of thalamo-cortical white matter tracts. It is still largely unknown if the brain can properly produce sleep spindles when it underwent extensive white matter deterioration in these tracts, and we hypothesized that it would affect sleep spindle generation and morphology. We tested this hypothesis with chronic moderate to severe traumatic brain injury (n ¼ 23; 30.5 6 11.1 years old; 17 m/6f), a unique human model of extensive white matter deterioration, and a healthy control group (n ¼ 27; 30.3 6 13.4 years old; 21m/6f). Sleep spindles were analysed on a full night of polysomnography over the frontal, central and parietal brain regions, and we measured their density, morphology and sigma-band power. White matter deterioration was quantified using diffusion-weighted MRI, with which we performed both whole-brain voxel-wise analysis (Tract-Based Spatial Statistics) and probabilistic tractography (with High Angular Resolution Diffusion Imaging) to target the thalamo-cortical tracts. Group differences were assessed for all variables and correlations were performed separately in each group, corrected for age and multiple comparisons. Surprisingly, although extensive white matter damage across the brain including all thalamo-cortical tracts was evident in the brain-injured group, sleep spindles remained completely undisrupted when compared to a healthy control group. In addition, almost all sleep spindle characteristics were not associated with the degree of white matter deterioration in the braininjured group, except that more white matter deterioration correlated with lower spindle frequency over the frontal regions. This study highlights the resilience of sleep spindles to the deterioration of all white matter tracts critical to their existence, as they conserve normal density during non-rapid eye movement sleep with mostly unaltered morphology. We show that even with such a severe traumatic event, the brain has the ability to adapt or to withstand alterations in order to conserve normal sleep spindles

    Cerebral white matter diffusion properties and free‐water with obstructive sleep apnea severity in older adults

    Get PDF
    Characterizing the effects of obstructive sleep apnea (OSA) on the aging brain could be key in our understanding of neurodegeneration in this population. Our objective was to assess white matter properties in newly diagnosed and untreated adults with mild to severe OSA. Sixty‐five adults aged 55 to 85 were recruited and divided into three groups: control (apnea‐hypopnea index ≤5/hr; n = 18; 65.2 ± 7.2 years old), mild (>5 to ≤15 hr; n = 27; 64.2 ± 5.3 years old) and moderate to severe OSA (>15/hr; n = 20; 65.2 ± 5.5 years old). Diffusion tensor imaging metrics (fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity, and mean diffusivity) were compared between groups with Tract‐Based Spatial Statistics within the white matter skeleton created by the technique. Groups were also compared for white matter hyperintensities volume and the free‐water (FW) fraction. Compared with controls, mild OSA participants showed widespread areas of lower diffusivity (p < .05 corrected) and lower FW fraction (p < .05). Participants with moderate to severe OSA showed lower AD in the corpus callosum compared with controls (p < .05 corrected). No between‐group differences were observed for FA or white matter hyperintensities. Lower white matter diffusivity metrics is especially marked in mild OSA, suggesting that even the milder form may lead to detrimental outcomes. In moderate to severe OSA, competing pathological responses might have led to partial normalization of diffusion metrics

    The Benefits Conferred by Radial Access for Cardiac Catheterization Are Offset by a Paradoxical Increase in the Rate of Vascular Access Site Complications With Femoral Access The Campeau Radial Paradox

    Get PDF
    AbstractObjectivesThe purpose of this study was to assess whether the benefits conferred by radial access (RA) at an individual level are offset by a proportionally greater incidence of vascular access site complications (VASC) at a population level when femoral access (FA) is performed.BackgroundThe recent widespread adoption of RA for cardiac catheterization has been associated with increased rates of VASCs when FA is attempted.MethodsLogistic regression was used to calculate the adjusted VASC rate in a contemporary cohort of consecutive patients (2006 to 2008) where both RA and FA were used, and compared it with the adjusted VASC rate observed in a historical control cohort (1996 to 1998) where only FA was used. We calculated the adjusted attributable risk to estimate the proportion of VASC attributable to the introduction of RA in FA patients of the contemporary cohort.ResultsA total of 17,059 patients were included. At a population level, the VASC rate was higher in the overall contemporary cohort compared with the historical cohort (adjusted rates: 2.91% vs. 1.98%; odds ratio [OR]: 1.48, 95% confidence interval [CI]: 1.17 to 1.89; p = 0.001). In the contemporary cohort, RA patients experienced fewer VASC than FA patients (adjusted rates: 1.44% vs. 4.19%; OR: 0.33, 95% CI: 0.23 to 0.48; p < 0.001). We observed a higher VASC rate in FA patients in the contemporary cohort compared with the historical cohort (adjusted rates: 4.19% vs. 1.98%; OR: 2.16, 95% CI: 1.67 to 2.81; p < 0.001). This finding was consistent for both diagnostic and therapeutic catheterizations separately. The proportion of VASCs attributable to RA in the contemporary FA patients was estimated at 52.7%.ConclusionsIn a contemporary population where both RA and FA were used, the safety benefit associated with RA is offset by a paradoxical increase in VASCs among FA patients. The existence of this radial paradox should be taken into consideration, especially among trainees and default radial operators
    corecore