516 research outputs found

    Concordance between subjective and objective measures of infant sleep varies by age and maternal mood: Implications for studies of sleep and cognitive development

    Get PDF
    Infant habitual sleep has been proposed as an important moderator of development in domains such as attention, memory or temperament. To test such hypotheses, we need to know how to accurately and consistently assess habitual sleep in infancy. Common assessment methods include easy to deploy but subjective parent-report measures (diary/sleep questionnaire); or more labour-intensive but objective motor movement measures (actigraphy). Understanding the degree to which these methods provide converging insights is important, but cross-method agreement has yet to be investigated longitudinally. Moreover, it is unclear whether concordance systematically varies with infant or maternal characteristics that could represent confounders in observational studies. This longitudinal study (up to 4 study visits/participant) investigated cross-method concordance on one objective (7-day actigraphy) and three commonly used subjective (7-day sleep diary, Brief Infant Sleep Questionnaire, Sleep & Settle Questionnaire) sleep measures in 76 typically developing infants (age: 4–14 months) and assessed the impact of maternal characteristics (stress, age, education) and infant characteristics (age) on cross-method concordance. In addition, associations between objective and subjective sleep measures and a measure of general developmental status (Ages & Stages Questionnaire) were investigated. A range of equivalence analyses (tests of equivalence, correlational analyses, Bland-Altman plots) showed mixed agreement between sleep measures. Most importantly, cross-method agreement was associated with maternal stress levels and infant age. Specifically, agreement between different measures of night waking was better for mothers experiencing higher stress levels and was higher for younger than older infants; the reverse pattern was true for day sleep duration. Interestingly, objective and subjective measures did not yield the same patterns of association with developmental domains, indicating that sleep method choice can influence which associations are found between sleep and cognitive development. However, results converged across day sleep and problem-solving skills, highlighting the importance of studying day sleep in future studies. We discuss implications of sleep method choice for investigating sleep in the context of studying infant development and behaviour

    An Asymptotic Preserving Scheme for the Euler equations in a strong magnetic field

    Get PDF
    This paper is concerned with the numerical approximation of the isothermal Euler equations for charged particles subject to the Lorentz force. When the magnetic field is large, the so-called drift-fluid approximation is obtained. In this limit, the parallel motion relative to the magnetic field direction splits from perpendicular motion and is given implicitly by the constraint of zero total force along the magnetic field lines. In this paper, we provide a well-posed elliptic equation for the parallel velocity which in turn allows us to construct an Asymptotic-Preserving (AP) scheme for the Euler-Lorentz system. This scheme gives rise to both a consistent approximation of the Euler-Lorentz model when epsilon is finite and a consistent approximation of the drift limit when epsilon tends to 0. Above all, it does not require any constraint on the space and time steps related to the small value of epsilon. Numerical results are presented, which confirm the AP character of the scheme and its Asymptotic Stability

    A nonlinear drift which leads to Îș\kappa-generalized distributions

    Full text link
    We consider a system described by a Fokker-Planck equation with a new type of momentum-dependent drift coefficient which asymptotically decreases as −1/p-1/p for a large momentum pp. It is shown that the steady-state of this system is a Îș\kappa-generalized Gaussian distribution, which is a non-Gaussian distribution with a power-law tail.Comment: Submitted to EPJB. 8 pages, 2 figures, dedicated to the proceedings of APFA

    Structure preserving schemes for mean-field equations of collective behavior

    Full text link
    In this paper we consider the development of numerical schemes for mean-field equations describing the collective behavior of a large group of interacting agents. The schemes are based on a generalization of the classical Chang-Cooper approach and are capable to preserve the main structural properties of the systems, namely nonnegativity of the solution, physical conservation laws, entropy dissipation and stationary solutions. In particular, the methods here derived are second order accurate in transient regimes whereas they can reach arbitrary accuracy asymptotically for large times. Several examples are reported to show the generality of the approach.Comment: Proceedings of the XVI International Conference on Hyperbolic Problem

    Interaction between superconducting vortices and Bloch wall in ferrite garnet film

    Full text link
    Interaction between a Bloch wall in a ferrite-garnet film and a vortex in a superconductor is analyzed in the London approximation. Equilibrium distribution of vortices formed around the Bloch wall is calculated. The results agree quantitatively with magneto-optical experiment where an in-plane magnetized ferrite-garnet film placed on top of NbSe2 superconductor allows observation of individual vortices. In particular, our model can reproduce a counter-intuitive attraction observed between vortices and a Bloch wall having the opposite polarity. It is explained by magnetic charges appearing due to discontinuity of the in-plane magnetization across the wall.Comment: 4 pages, 5 figure

    Habitual night waking associates with dynamics of waking cortical theta power in infancy

    Get PDF
    The implications of the substantial individual differences in infant sleep for early brain development remains unclear. Here, we examined whether night sleep quality relates to daytime brain activity, operationalised through measures of EEG theta power and its dynamic modulation, which have been previously linked to later cognitive development (Braithwaite et al., 2020, Jones et al., 2020). For this longitudinal study 76 typically developing infants were studied (age: 4-14 months, 166 individual study visits) over the course of 6 months with 1, 2, 3, or 4 lab visits. Habitual sleep was measured with a 7-day sleep diary and actigraphy, and the BISQ. 20-channel EEG was recorded while infants watched multiple rounds of videos of women singing nursery rhymes; oscillatory power in the theta band was extracted. Key metrics were average theta across stimuli, and the slope of change in theta within the first novel movie. Both objective and subjective sleep assessment methods showed a relationship between more night waking, and higher overall theta power and reduced dynamic modulation of theta over the course of the novel video stimuli. These results may indicate altered learning and consolidation in infants with more disrupted night sleep, which may have implications for cognitive development

    Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up

    Get PDF
    We investigate a particle system which is a discrete and deterministic approximation of the one-dimensional Keller-Segel equation with a logarithmic potential. The particle system is derived from the gradient flow of the homogeneous free energy written in Lagrangian coordinates. We focus on the description of the blow-up of the particle system, namely: the number of particles involved in the first aggregate, and the limiting profile of the rescaled system. We exhibit basins of stability for which the number of particles is critical, and we prove a weak rigidity result concerning the rescaled dynamics. This work is complemented with a detailed analysis of the case where only three particles interact

    Route of Administration of the TLR9 Agonist CpG Critically Determines the Efficacy of Cancer Immunotherapy in Mice

    Get PDF
    Contains fulltext : 81648.pdf (publisher's version ) (Open Access)BACKGROUND: The TLR9 agonist CpG is increasingly applied in preclinical and clinical studies as a therapeutic modality to enhance tumor immunity. The clinical application of CpG appears, however, less successful than would be predicted from animal studies. One reason might be the different administration routes applied in most mouse studies and clinical trials. We studied whether the efficacy of CpG as an adjuvant in cancer immunotherapy is dependent on the route of CpG administration, in particular when the tumor is destructed in situ. METHODOLOGY/PRINCIPAL FINDINGS: In situ tumor destruction techniques are minimally invasive therapeutic alternatives for the treatment of (nonresectable) solid tumors. In contrast to surgical resection, tumor destruction leads to the induction of weak but tumor-specific immunity that can be enhanced by coapplication of CpG. As in situ tumor destruction by cryosurgery creates an instant local release of antigens, we applied this model to study the efficacy of CpG to enhance antitumor immunity when administrated via different routes: peritumoral, intravenous, and subcutaneous but distant from the tumor. We show that peritumoral administration is superior in the activation of dendritic cells, induction of tumor-specific CTL, and long-lasting tumor protection. Although the intravenous and subcutaneous (at distant site) exposures are commonly used in clinical trials, they only provided partial protection or even failed to enhance antitumor responses as induced by cryosurgery alone. CONCLUSIONS/SIGNIFICANCE: CpG administration greatly enhances the efficacy of in situ tumor destruction techniques, provided that CpG is administered in close proximity of the released antigens. Hence, this study helps to provide directions to fully benefit from CpG as immune stimulant in a clinical setting
    • 

    corecore