69 research outputs found

    A multi-modal table tennis robot system

    Full text link
    In recent years, robotic table tennis has become a popular research challenge for perception and robot control. Here, we present an improved table tennis robot system with high accuracy vision detection and fast robot reaction. Based on previous work, our system contains a KUKA robot arm with 6 DOF, with four frame-based cameras and two additional event-based cameras. We developed a novel calibration approach to calibrate this multimodal perception system. For table tennis, spin estimation is crucial. Therefore, we introduced a novel, and more accurate spin estimation approach. Finally, we show how combining the output of an event-based camera and a Spiking Neural Network (SNN) can be used for accurate ball detection.Comment: Accepted for RoboLetics: Workshop on Robot Learning in Athletics @CoRL 202

    eWand: A calibration framework for wide baseline frame-based and event-based camera systems

    Full text link
    Accurate calibration is crucial for using multiple cameras to triangulate the position of objects precisely. However, it is also a time-consuming process that needs to be repeated for every displacement of the cameras. The standard approach is to use a printed pattern with known geometry to estimate the intrinsic and extrinsic parameters of the cameras. The same idea can be applied to event-based cameras, though it requires extra work. By using frame reconstruction from events, a printed pattern can be detected. A blinking pattern can also be displayed on a screen. Then, the pattern can be directly detected from the events. Such calibration methods can provide accurate intrinsic calibration for both frame- and event-based cameras. However, using 2D patterns has several limitations for multi-camera extrinsic calibration, with cameras possessing highly different points of view and a wide baseline. The 2D pattern can only be detected from one direction and needs to be of significant size to compensate for its distance to the camera. This makes the extrinsic calibration time-consuming and cumbersome. To overcome these limitations, we propose eWand, a new method that uses blinking LEDs inside opaque spheres instead of a printed or displayed pattern. Our method provides a faster, easier-to-use extrinsic calibration approach that maintains high accuracy for both event- and frame-based cameras

    Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions

    Get PDF
    Cryo-electron microscopy produces 3D density maps of molecular machines, which consist of various molecular components such as proteins and RNA. Segmentation of individual components in such maps is a challenging task, and is mostly accomplished interactively. We present an approach based on the immersive watershed method and grouping of the resulting regions using progressively smoothed maps. The method requires only three parameters: the segmentation threshold, a smoothing step size, and the number of smoothing steps. We first apply the method to maps generated from molecular structures and use a quantitative metric to measure the segmentation accuracy. The method does not attain perfect accuracy, however it produces single or small groups of regions that roughly match individual proteins or subunits. We also present two methods for fitting of structures into density maps, based on aligning the structures with single regions or small groups of regions. The first method aligns centers and principal axes, whereas the second aligns centers and then rotates the structure to find the best fit. We describe both interactive and automated ways of using these two methods. Finally, we show segmentation and fitting results for several experimentally-obtained density maps.National Institutes of Health (U.S.) (Grant PN2EY016525)National Institutes of Health (U.S.) (Grant R01GM079429)National Institutes of Health (U.S.) (Grant P41RR02250)National Science Foundation (U.S.) (IIS-0705644

    Collection of indirect excitons in a diamond-shaped electrostatic trap

    Full text link
    We report on the principle and realization of a new trap for excitons -- the diamond electrostatic trap -- which uses a single electrode to create a confining potential for excitons. We also create elevated diamond traps which permit evaporative cooling of the exciton gas. We observe collection of excitons towards the trap center with increasing exciton density. This effect is due to screening of disorder in the trap by the excitons. As a result, the diamond trap behaves as a smooth parabolic potential which realizes a cold and dense exciton gas at the trap center.Comment: 4 Pages, 5 figure

    Consumer perceptions of beef healthiness: results from a qualitative study in four European countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consumer perception of the healthiness of beef is an important determinant of beef consumption. However, little is known about how consumers perceive the healthiness of beef. The aim of this study is to shed light on the associations between beef and health.</p> <p>Methods</p> <p>Eight focus group discussions were conducted in four European countries (France, UK, Germany, Spain), each consisting of seven to nine participants. A content analysis was performed on the transcripts of these discussions.</p> <p>Results</p> <p>Although beef was generally perceived as healthful, focus group participants expected positive as well as negative effects of beef consumption on their health. Labelled, branded, fresh and lean beef were perceived as signalling healthful beef, in contrast with further processed and packaged beef. Consumers felt that their individual choices could make a difference with respect to the healthiness of beef consumed. Focus group participants were not in favour of improving beef healthiness during processing, but rather focussed on appropriate consumption behaviour and preparation methods.</p> <p>Conclusions</p> <p>The individual responsibility for health implies that consumers should be able to make correct judgements about how healthful their food is. However, the results of this study indicate that an accurate assessment of beef healthiness is not always straightforward. The presented results on consumer perceptions of beef healthiness provide insights into consumer decision making processes, which are important for the innovation and product differentiation in the European beef sector, as well as for public health policy decisions related to meat consumption in general and beef consumption in particular.</p

    An experimental component analysis of sexual reproduction : I. The egg production and egg fertilization processes, with some consideration of the mating process, for Drosophila melanogaster Meigen

    No full text
    Experimental components analysis (Holling 1966) is used to develop a computer model of the four processes of sexual reproduction: mating, egg production, egg fertilization, and oviposition site selection. A general function of interacting populations is developed, and its application to mating and oviposition site selection is discussed. Data from the literature on mating are used to estimate parameter values for this function. A model of egg production and egg fertilization is developed from an experimental study of the vg strain of Drosophila melanogaster. Egg production is a complex process consisting of four components affecting individual ovarioles: ovariole activation, ovariole production, vitellegenesis, and ovariole deactivation. Threshold effects are found to exist for all four components. Egg fertilization is a simple process involving number of sperm stored and a constant probability of successful fertilization. However, results indicate that both egg fertilization and egg production become more complex beyond the range of treatments used here. Assumptions, not supported by data, are made for the processes of oviposition site selection, aging, mortality, and development. These assumptions are combined with the models of mating, egg production, and egg fertilization into a single tentative model for sexual reproduction. Simulations using this model suggest possible effects of ecological importance: a sigmoid relationship between reproductive rate and density; and a chance in tactics with increasing mortality due to predation.Science, Faculty ofZoology, Department ofGraduat

    Emulsion synthetic route of hierarchically porous zeolite-geopolymer composites for Sr2+ decontamination in fixed bed process

    No full text
    International audienceThe decontamination of wastewater is an important issue for the nuclear industry. The removal of Sr2+ cation, one of the most problematic radioelements, requires hierarchical materials suitable for fixed-bed processes. This article describes a patented emulsion-templating route for the synthesis of Linde Type A (LTA) zeolite-geopolymer composites with a multiscale porosity. By dispersing zeolite particles in an emulsion oil-in-water containing precursors of geopolymer, LTA zeolite–geopolymer composites can be obtained by curing and eliminating the oil phase. The zeolite particles act as a hydrophilic filler during the emulsion stabilization step, altering the macroporous structure of the materials (replicating the oil droplets), the size of the mesopores in the geopolymer binder, and the mechanical robustness of the composites. Furthermore, the presence of LTA zeolite particles increases the selectivity of the composites for Sr2+ cation in very saline media, while the porous network of the material ensures rapid adsorption. The optimal composite prepared here outperformed a commercial sorbent for the Sr2+ decontamination of a saline wastewater through a packed column
    • …
    corecore