10 research outputs found

    Adaptive strategies of Scots pine under shade: Increase in lignin synthesis and ecotypic variation in defense-related gene expression

    Get PDF
    Shade is a stressful condition for plants characterized by low Red:Far-Red (R:FR) ratio. The northern latitudes in Sweden daily receive more hours of FR-enriched light (twilight) or shade-like conditions compared to southern forests during the growing season. Scots pine (Pinus sylvestris L.) is a shade-intolerant species. Yet, it is well adapted to this latitudinal variation in light, which is evident by a northward increase in FR requirement to maintain growth. Shade adversely affects plant growth; it makes the plant weak and, therefore, susceptible to pathogen attack. Lignin is involved in plant protection against pathogen invasion mainly by forming a physical barrier. We studied lignin synthesis and expression of defense-related genes (growth-defense trade-offs) under a low R:FR (shade) ratio in Scots pine. A higher number of immunity/defense-related genes were up-regulated in response to shade in northern populations compared to southern ones, which can be viewed as a local adaptation to light quality for optimal growth and survival. Light quality regulates lignin metabolism; light stimulates lignin synthesis, while shade causes a decrease in lignin synthesis in most angiosperms. In contrast, Scots pine shows an increase in lignin synthesis supported by the higher expression of a few key genes in the lignin biosynthetic pathway, a novel finding reported by our study. These findings can be applied to future breeding strategies in forestry to produce disease-resilient trees

    Enhanced lignin synthesis and ecotypic variation in defense-related gene expression in response to shade in Norway spruce

    Get PDF
    During the growth season, northern forests in Sweden daily receive more hours of far-red (FR)-enriched light or twilight (shade) as compared to southern forests. Norway spruce (shade-tolerant) are adapted to latitudinal variation in twilight characterized by a northward increase in FR requirement to maintain growth. Shade is a stressful condition that affects plant growth and increases plant's susceptibility to pathogen attack. Lignin plays a central role in plant defense and its metabolism is regulated by light wavelength composition (light quality). In the current work, we studied regulation of lignin synthesis and defense-related genes (growth-defense trade-offs) in response to shade in Norway spruce. In most angiosperms, light promotes lignin synthesis, whereas shade decreases lignin production leading to weaker stem, which may make plants more disease susceptible. In contrast, enhanced lignin synthesis was detected in response to shade in Norway spruce. We detected a higher number of immunity/defense-related genes up-regulated in northern populations as compared to south ones in response to shade. Enhanced lignin synthesis coupled with higher defense-related gene expression can be interpreted as an adaptive strategy for better survival in northern populations. Findings will contribute to ensuring deployment of well-adapted genetic material and identifying tree families with enhanced disease resistance

    The chromatin-modifying protein HUB2 is involved in the regulation of lignin composition in xylem vessels

    Get PDF
    PIRIN2 (PRN2) was earlier reported to suppress syringyl (S)-type lignin accumulation of xylem vessels of Arabidopsis thaliana. In the present study, we report yeast two-hybrid results supporting the interaction of PRN2 with HISTONE MONOUBIQUITINATION2 (HUB2) in Arabidopsis. HUB2 has been previously implicated in several plant developmental processes, but not in lignification. Interaction between PRN2 and HUB2 was verified by β-galactosidase enzymatic and co-immunoprecipitation assays. HUB2 promoted the deposition of S-type lignin in the secondary cell walls of both stem and hypocotyl tissues, as analysed by pyrolysis-GC/MS. Chemical fingerprinting of individual xylem vessel cell walls by Raman and Fourier transform infrared microspectroscopy supported the function of HUB2 in lignin deposition. These results, together with a genetic analysis of the hub2 prn2 double mutant, support the antagonistic function of PRN2 and HUB2 in deposition of S-type lignin. Transcriptome analyses indicated the opposite regulation of the S-type lignin biosynthetic gene FERULATE-5-HYDROXYLASE1 by PRN2 and HUB2 as the underlying mechanism. PRN2 and HUB2 promoter activities co-localized in cells neighbouring the xylem vessel elements, suggesting that the S-type lignin-promoting function of HUB2 is antagonized by PRN2 for the benefit of the guaiacyl (G)-type lignin enrichment of the neighbouring xylem vessel elements

    SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance

    Get PDF
    Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens. Cytokinin and auxin are two major hormonal regulators of plant growth. Here the authors identify SYAC1, a gene that is synergistically activated by the two hormones being applied together, and show that it is required for normal growth while negatively impacting pathogen resistance

    Biochemical Conversion of Torrefied Norway Spruce After Pretreatment with Acid or Ionic Liquid

    Get PDF
    The chemical effects of torrefaction and the possibility to combine torrefaction with biochemical conversion were explored in experiments with five preparations of wood of Norway spruce that had been torrefied using different degrees of severity. Compositional analysis and analyses using solid-state CP/MAS C-13 NMR, Fourier-transform infrared (FTIR) spectroscopy, and Py-GC/MS showed small gradual changes, such as decreased hemicellulosic content and increased Klason lignin value, for torrefaction conditions in the range from 260 A degrees C and 8 min up to 310 A degrees C and 8 min. The most severe torrefaction conditions (310 A degrees C, 25 min) resulted in substantial loss of glucan and further increase of the Klason lignin value, which was attributed to conversion of carbohydrate to pseudo-lignin. Even mild torrefaction conditions led to decreased susceptibility to enzymatic hydrolysis of cellulose, a state which was not changed by pretreatment with sulfuric acid. Pretreatment with the ionic liquid (IL) 1-butyl-3-methylimidazolium acetate overcame the additional recalcitrance caused by torrefaction, and the glucose yields after 72 h of enzymatic hydrolysis of wood torrefied at 260 A degrees C for 8 min and at 285 A degrees C for 16.5 min were as high as that of IL-pretreated non-torrefied spruce wood. Compared to IL-pretreated non-torrefied reference wood, the glucose production rates after 2 h of enzymatic hydrolysis of IL-pretreated wood torrefied at 260 A degrees C for 8 min and at 285 A degrees C for 16.5 min were 63 and 40 % higher, respectively. The findings offer increased understanding of the effects of torrefaction and indicate that mild torrefaction is compatible with biochemical conversion after pretreatment with alternative solvents that disrupt pseudo-lignin-containing lignocellulose.Bio4Energ

    Screening Suitability of Northern Hemisphere Algal Strains for Heterotrophic Cultivation and Fatty Acid Methyl Ester Production

    No full text
    Rapid rises in atmospheric CO2 levels derived from fossil fuel combustion are imposing urgent needs for renewable substitutes. One environmentally friendly alternative is biodiesel produced from suitable microalgal fatty acids. Algal strains normally grow photoautotrophically, but this is problematic in Northern areas because of the light limitations for much of the year. Mixotrophic and particularly heterotrophic strains could be valuable, especially if they can be cultivated in municipal wastewater with contents of nutrients such as nitrogen and phosphorous that should be reduced before release into receiving water. Thus, the aim of this study was to screen for microalgal strains suitable for heterotrophic cultivation with a cheap carbon source (glycerol) for biodiesel production in Nordic, and other high-latitude, countries. One of the examined strains, a Desmodesmus sp. strain designated 2-6, accumulated biomass at similar rates in heterotrophic conditions with 40 mM glycerol as in autotrophic conditions. Furthermore, in heterotrophic conditions it produced more fatty acids, and ca. 50% more C18:1 fatty acids, as well as showing a significant decrease in C18:3 fatty acids, all of which are highly desirable features for biodiesel production

    Arabidopsis XTH4 and XTH9 Contribute to Wood Cell Expansion and Secondary Wall Formation

    Get PDF
    Xylem cell expansion and fiber intrusive tip growth require the activity of enzymes that rearrange xyloglucan in cell walls, and their deficiency not only affects cell expansion but alters subsequent secondary wall formation via cell wall integrity-sensing mechanisms.Xyloglucan is the major hemicellulose of dicotyledon primary cell walls, affecting the load-bearing framework with the participation of xyloglucan endo-transglycosylase/hydrolases (XTHs). We used loss- and gain-of function approaches to study functions of XTH4 and XTH9 abundantly expressed in cambial regions during secondary growth of Arabidopsis (Arabidopsis thaliana). In secondarily thickened hypocotyls, these enzymes had positive effects on vessel element expansion and fiber intrusive growth. They also stimulated secondary wall thickening but reduced secondary xylem production. Cell wall analyses of inflorescence stems revealed changes in lignin, cellulose, and matrix sugar composition indicating an overall increase in secondary versus primary walls in mutants, indicative of higher xylem production compared with the wild type (since secondary walls were thinner). Intriguingly, the number of secondary cell wall layers compared with the wild type was increased in xth9 and reduced in xth4, whereas the double mutant xth4x9 displayed an intermediate number of layers. These changes correlated with specific Raman signals from the walls, indicating changes in lignin and cellulose. Secondary walls were affected also in the interfascicular fibers, where neither XTH4 nor XTH9 was expressed, indicating that these effects were indirect. Transcripts involved in secondary wall biosynthesis and cell wall integrity sensing, including THESEUS1 and WALL ASSOCIATED KINASE2, were highly induced in the mutants, indicating that deficiency in XTH4 and XTH9 triggers cell wall integrity signaling, which, we propose, stimulates xylem cell production and modulates secondary wall thickening. Prominent effects of XTH4 and XTH9 on secondary xylem support the hypothesis that altered xyloglucan affects wood properties both directly and via cell wall integrity sensing

    Biochemical profiling of diabetes disease progression by multivariate vibrational microspectroscopy of the pancreas

    No full text
    Despite the dramatic increase in the prevalence of diabetes, techniques for in situ studies of the underlying pancreatic biochemistry are lacking. Such methods would facilitate obtaining mechanistic understanding of diabetes pathophysiology and aid in prognostic and/or diagnostic assessments. In this report we demonstrate how a multivariate imaging approach (orthogonal projections to latent structures - discriminant analysis) can be applied to generate full vibrational microspectroscopic profiles of pancreatic tissues. These profiles enable extraction of known and previously unrecorded biochemical alterations in models of diabetes, and allow for classification of the investigated tissue with regards to tissue type, strain and stage of disease progression. Most significantly, the approach provided evidence for dramatic alterations of the pancreatic biochemistry at the initial onset of immune-infiltration in the Non Obese Diabetic model for type 1 diabetes. Further, it enabled detection of a previously undocumented accumulation of collagen fibrils in the leptin deficient ob/ob mouse islets. By generating high quality spectral profiles through the tissue capsule of hydrated human pancreata and by in vivo Raman imaging of pancreatic islets transplanted to the anterior chamber of the eye, we provide critical feasibility studies for the translation of this technique to diagnostic assessments of pancreatic biochemistry in vivo

    Genomic-assisted identification of genes involved in secondary growth in Arabidopsis utilising transcript profiling of poplar wood-forming tissues

    No full text
    Despite the importance of secondary growth in plants, relatively few genes regulating this process have been identified to date. By using data from detailed transcript profiling of the poplar wood-forming tissues, 150 genes that are differentially expressed within the zone of secondary growth were identified. In order to determine the possible function of these poplar genes, potential Arabidopsis thaliana orthologs were identified and gene knockout lines anal- ysed. Three selection filters were used to identify the most likely orthologous genes using poplar and Arabidopsis sequence comparisons, expression pro- filing in secondary thickened Arabidopsis hypocotyls and global expression analysis of Arabidopsis tissues. Three genes encoding AtCSLA2 (At5g22740), the AtGUT1 GT47 glycosyltransferase (At1g27440) and a protein with no proposed function AtUNKA (At4g27435) were selected for further detailed analysis of their role in secondary growth in Arabidopsis. The presented genome-based approach using both poplar and Arabidopsis systems provides powerful means towards assigning biological functions to enzymes with poorly understood biochemical activity, such as AtCSLA2 and AtGUT1, as well as for proteins with no known function
    corecore