129 research outputs found

    Self-sustainable bio-methanol & bio-char coproduction from 2nd generation biomass gasification

    Get PDF
    Methanol is an important intermediate in the synthesis of different chemicals. It is mainly produced by reforming of natural gas in centralized facilities with productive capacities on the order of 109 tons per day. Production of methanol from biomass suffers from the cost and logistics of the transportation of biomass and it has not yet maturated into commercial scale. The techno-economic feasibility of the co-production of bio-methanol and bio-char is assessed through detailed computer simulations using process simulator Aspen HYSYS® together with the gasification simulator GASDS. This work further elaborates the previous results on the bio-methanol production process, presenting particularities and updates on previously reported values. The production model is seen to be valid, with payback times that go from 3 to 6 years according to the capacity of the plant (100 to 1000 kt of biomass per year). Self-sustainability is possible but a 50/50 mix of producing and buying electricity yields the most economic choice. © Copyright 2017, AIDIC Servizi S.r.l

    Fuzzy adaptive control system of a non-stationary plant with closed-loop passive identifier

    Get PDF
    Abstract Typically chemical processes have significant nonlinear dynamics, but despite this, industry is conventionally still using PID-based regulatory control systems. Moreover, process units are interconnected, in terms of inlet and outlet material/energy flows, to other neighboring units, thus their dynamic behavior is strongly influenced by these connections and, as a consequence, conventional control systems performance often proves to be poor. This paper proposes a hybrid fuzzy PID control logic, whose tuning parameters are provided in real time. The fuzzy controller tuning is made on the basis of Mamdani controller, also exploiting the results coming from an identification procedure that is carried on when an unmeasured step disturbance of any shape affects the process behavior. In addition, this paper compares a fuzzy logic based PID with PID regulators whose tuning is performed by standard and well-known methods. In some cases the proposed tuning methodology ensures a control performance that is comparable to that guaranteed by simpler and more common tuning methods. However, in case of dynamic changes in the parameters of the controlled system, conventionally tuned PID controllers do not show to be robust enough, thus suggesting that fuzzy logic based PIDs are definitively more reliable and effective

    Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers

    Full text link
    In antiferromagnetically coupled superlattices grown on (001) faces of cubic substrates, e.g. based on materials combinations as Co/Cu, Fe/Si, Co/Cr, or Fe/Cr, the magnetic states evolve under competing influence of bilinear and biquadratic exchange interactions, surface-enhanced four-fold in-plane anisotropy, and specific finite-size effects. Using phenomenological (micromagnetic) theory, a comprehensive survey of the magnetic states and reorientation transitions has been carried out for multilayer systems with even number of ferromagnetic sub-layers and magnetizations in the plane. In two-layer systems (N=2) the phase diagrams in dependence on components of the applied field in the plane include ``swallow-tail'' type regions of (metastable) multistate co-existence and a number of continuous and discontinuous reorientation transitions induced by radial and transversal components of the applied field. In multilayers (N \ge 4) noncollinear states are spatially inhomogeneous with magnetization varying across the multilayer stack. For weak four-fold anisotropy the magnetic states under influence of an applied field evolve by a complex continuous reorientation into the saturated state. At higher anisotropy they transform into various inhomogeneous and asymmetric structures. The discontinuous transitions between the magnetic states in these two-layers and multilayers are characterized by broad ranges of multi-phase coexistence of the (metastable) states and give rise to specific transitional domain structures.Comment: Manuscript 34 pages, 14 figures; submitted for publicatio

    BPAG1a and b Associate with EB1 and EB3 and Modulate Vesicular Transport, Golgi Apparatus Structure, and Cell Migration in C2.7 Myoblasts

    Get PDF
    BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5′ end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3′ end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts
    corecore