48 research outputs found

    Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica

    Get PDF
    Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems.Portuguese funds from FCT - Foundation for Science and Technology [UID/Multi/04326/2013]; SZN PhD fellowship via the Open University; ESF COST Action Seagrass Productivity: From Genes to Ecosystem Management [ES0906]info:eu-repo/semantics/publishedVersio

    Circadian rhythm leaf movement of Phaseolus vulgaris and the role of calcium ions

    No full text
    Legume plants, due to their distinctive botanical characteristics, such as leaf movements, physiological characteristics, such as nitrogen fixation, and their abilities to endure environmental stresses, have important roles in sustainable pastures development. Leaf movement of legume plants is turgor regulated and osmotically active fluxes of ions between extensor and flexor of pulvinus cause this movement. To determine the role of calcium ions in circadian leaf movements of Phaseolus vulgaris L., a radiotracer technique experiment using 45Ca ions were employed. Measurements were taken during circadian leaf movements, and samples were taken from different parts of the leaflet. The 45Ca β-particle activity reduced from leaflet base pulvinus to leaf tip. The pulvinus had the highest activity, while the leaf tip had the lowest. By increase of the ratio of 45Ca β-particle activity within flexor to extensor (Fl/Ex) the midrib-petiole angle, as an indicator of leaf movement, increased linearly during circadian leaf movement (r = 0.86). The 45Ca β-particle activity of Flex/Ext ratio reduced linearly (r = −0.88) toward midnight. In conclusion, it was found that calcium ions accumulation is opposite to the fluxes of osmatically active ions and water movement. Calcium ions accumulate at less negative water potential side of the pulivnus

    Mechanical and electrical anisotropy in Mimosa pudica pulvini

    No full text
    Thigmonastic or seismonastic movements in Mimosa pudica, such as the response to touch, appear to be regulated by electrical, hydrodynamical and chemical signal transduction. The pulvinus of Mimosa pudica shows elastic properties, and we found that electrically or mechanically induced movements of the petiole were accompanied by a change of the pulvinus shape. As the petiole falls, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of water between the upper and lower parts of the pulvinus. This hydroelastic process is reversible. During the relaxation of the petiole, the volume of the lower part of the pulvinus increases and the volume of the upper part decreases. Redistribution of ions between the upper and lower parts of a pulvinus causes fast transport of water through aquaporins and causes a fast change in the volume of the motor cells. Here, the biologically closed electrochemical circuits in electrically and mechanically anisotropic pulvini of Mimosa pudica are analyzed using the charged capacitor method for electrostimulation at different voltages. Changing the polarity of electrodes leads to a strong rectification effect in a pulvinus and to different kinetics of a capacitor discharge if the applied initial voltage is 0.5 V or higher. The electrical properties of Mimosa pudica's pulvini were investigated and the equivalent electrical circuit within the pulvinus was proposed to explain the experimental data. The detailed mechanism of seismonastic movements in Mimosa pudica is discussed
    corecore