19 research outputs found

    Force-velocity relation and density profiles for biased diffusion in an adsorbed monolayer

    Full text link
    In this paper, which completes our earlier short publication [Phys. Rev. Lett. 84, 511 (2000)], we study dynamics of a hard-core tracer particle (TP) performing a biased random walk in an adsorbed monolayer, composed of mobile hard-core particles undergoing continuous exchanges with a vapor phase. In terms of an approximate approach, based on the decoupling of the third-order correlation functions, we obtain the density profiles of the monolayer particles around the TP and derive the force-velocity relation, determining the TP terminal velocity, V_{tr}, as the function of the magnitude of external bias and other system's parameters. Asymptotic forms of the monolayer particles density profiles at large separations from the TP, and behavior of V_{tr} in the limit of small external bias are found explicitly.Comment: Latex, 31 pages, 3 figure

    Effects of density imbalance on the BCS-BEC crossover in semiconductor electron-hole bilayers

    Full text link
    We study the occurrence of excitonic superfluidity in electron-hole bilayers at zero temperature. We not only identify the crossover in the phase diagram from the BCS limit of overlapping pairs to the BEC limit of non-overlapping tightly-bound pairs but also, by varying the electron and hole densities independently, we can analyze a number of phases that occur mainly in the crossover region. With different electron and hole effective masses, the phase diagram is asymmetric with respect to excess electron or hole densities. We propose as the criterion for the onset of superfluidity, the jump of the electron and hole chemical potentials when their densities cross.Comment: 4 pages, 3 figure

    Engineering Superfluidity in Electron-Hole Double Layers

    Full text link
    We show that band-structure effects are likely to prevent superfluidity in semiconductor electron-hole double-layer systems. We suggest the possibility that superfluidity could be realized by the application of uniaxial pressure perpendicular to the electron and hole layers.Comment: 4 pages, includes 3 figure
    corecore