4,565 research outputs found

    On the Non-Gaussianity Observed in the COBE-DMR Sky Maps

    Full text link
    In this paper we pursue the origin of the non-Gaussianity determined by a bispectrum analysis of the COBE-DMR 4-year sky maps. The robustness of the statistic is demonstrated by the rebinning of the data into 12 coordinate systems. By computing the bispectrum statistic as a function of various data partitions - by channel, frequency, and time interval, we show that the observed non-Gaussian signal is driven by the 53 GHz data. This frequency dependence strongly rejects the hypothesis that the signal is cosmological in origin. A jack-knife analysis of the coadded 53 and 90 GHz sky maps reveals those sky pixels to which the bispectrum statistic is particularly sensitive. We find that by removing data from the 53 GHz sky maps for periods of time during which a known systematic effect perturbs the 31 GHz channels, the amplitudes of the bispectrum coefficients become completely consistent with that expected for a Gaussian sky. We conclude that the non-Gaussian signal detected by the normalised bispectrum statistic in the publicly available DMR sky maps is due to a systematic artifact. The impact of removing the affected data on estimates of the normalisation of simple models of cosmological anisotropy is negligible.Comment: 14 pages, plus 8 Postscript and 3 GIF figures. LaTeX2e document using AASTeX v5.0 macros. Revised version accepted for publication in the Astrophysical Journal: small changes to the text, minor modifications to figures 1 and

    Systematic Distortion in Cosmic Microwave Background Maps

    Full text link
    To minimize instrumentally induced systematic errors, cosmic microwave background (CMB) anisotropy experiments measure temperature differences across the sky using paires of horn antennas, temperature map is recovered from temperature differences obtained in sky survey through a map-making procedure. To inspect and calibrate residual systematic errors in recovered temperature maps is important as most previous studies of cosmology are based on these maps. By analyzing pixel-ring couping and latitude dependence of CMB temperatures, we find notable systematic deviation from CMB Gaussianity in released Wilkinson Microwave Anisotropy Probe (WMAP) maps. The detected deviation is hard to explain by any process in the early universe and can not be ignored for a precision cosmology study.Comment: accepted for publication in Sci China G-Phy Mech Astro

    Water for utilities: climate change impacts on water quality and water availability for utilities in Europe

    Get PDF
    This report provides an assessment of the consequences of changing water availability for production of drinking water, the manufacturing industry and power production in Europe, due to climate change and socio-economic developments. The report is based up on projections of demographic and socio-economic trends and climate change impacts, according to the SRES A2 and B1 scenario’s also used by IPC

    Evolution of worldwide stock markets, correlation structure and correlation based graphs

    Full text link
    We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period Jan 1996 - Jul 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term timescale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the non diagonal elements of the correlation matrix, correlation based graphs and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks, in order to detect the fast dynamics of successive changes of correlation based graphs in a quantitative way.Comment: 8 pages, 11 figure

    Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data

    Get PDF
    A flexible maximum-entropy component separation algorithm is presented that accommodates anisotropic noise, incomplete sky-coverage and uncertainties in the spectral parameters of foregrounds. The capabilities of the method are determined by first applying it to simulated spherical microwave data sets emulating the COBE-DMR, COBE-DIRBE and Haslam surveys. Using these simulations we find that is very difficult to determine unambiguously the spectral parameters of the galactic components for this data set due to their high level of noise. Nevertheless, we show that is possible to find a robust CMB reconstruction, especially at the high galactic latitude. The method is then applied to these real data sets to obtain reconstructions of the CMB component and galactic foreground emission over the whole sky. The best reconstructions are found for values of the spectral parameters: T_d=19 K, alpha_d=2, beta_ff=-0.19 and beta_syn=-0.8. The CMB map has been recovered with an estimated statistical error of \sim 22 muK on an angular scale of 7 degrees outside the galactic cut whereas the low galactic latitude region presents contamination from the foreground emissions.Comment: 29 pages, 25 figures, version accepted for publication in MNRAS. One subsection and 6 figures added. Main results unchange

    Detecting the Cosmic Gravitational Wave Background with the Big Bang Observer

    Full text link
    The detection of the Cosmic Microwave Background Radiation (CMB) was one of the most important cosmological discoveries of the last century. With the development of interferometric gravitational wave detectors, we may be in a position to detect the gravitational equivalent of the CMB in this century. The Cosmic Gravitational Background (CGB) is likely to be isotropic and stochastic, making it difficult to distinguish from instrument noise. The contribution from the CGB can be isolated by cross-correlating the signals from two or more independent detectors. Here we extend previous studies that considered the cross-correlation of two Michelson channels by calculating the optimal signal to noise ratio that can be achieved by combining the full set of interferometry variables that are available with a six link triangular interferometer. In contrast to the two channel case, we find that the relative orientation of a pair of coplanar detectors does not affect the signal to noise ratio. We apply our results to the detector design described in the Big Bang Observer (BBO) mission concept study and find that BBO could detect a background with Ωgw>2.2×1017\Omega_{gw} > 2.2 \times 10^{-17}.Comment: 15 pages, 12 Figure

    The Planck-LFI instrument: analysis of the 1/f noise and implications for the scanning strategy

    Get PDF
    We study the impact of the 1/f noise on the PLANCK Low Frequency Instrument (LFI) osbervations (Mandolesi et al 1998) and describe a simple method for removing striping effects from the maps for a number of different scanning stategies. A configuration with an angle between telescope optical axis and spin-axis just less than 90 degrees (namely 85 degress) shows good destriping efficiency for all receivers in the focal plane, with residual noise degradation < 1-2 %. In this configuration, the full sky coverage can be achieved for each channel separately with a 5 degrees spin-axis precession to maintain a constant solar aspect angle.Comment: submitted to Astronomy and Astrophysics, 12 pages, 15 PostSript figure

    Sr0.9_{0.9}K0.1_{0.1}Zn1.8_{1.8}Mn0.2_{0.2}As2_{2}: a ferromagnetic semiconductor with colossal magnetoresistance

    Get PDF
    A bulk diluted magnetic semiconductor (Sr,K)(Zn,Mn)2_{2}As2_{2} was synthesized with decoupled charge and spin doping. It has a hexagonal CaAl2_{2}Si2_{2}-type structure with the (Zn,Mn)2_{2}As2_{2} layer forming a honeycomb-like network. Magnetization measurements show that the sample undergoes a ferromagnetic transition with a Curie temperature of 12 K and \revision{magnetic moment reaches about 1.5 μB\mu_{B}/Mn under μ0H\mu_0H = 5 T and TT = 2 K}. Surprisingly, a colossal negative magnetoresistance, defined as [ρ(H)ρ(0)]/ρ(0)[\rho(H)-\rho(0)]/\rho(0), up to -38\% under a low field of μ0H\mu_0H = 0.1 T and to -99.8\% under μ0H\mu_0H = 5 T, was observed at TT = 2 K. The colossal magnetoresistance can be explained based on the Anderson localization theory.Comment: Accepted for publication in EP

    LISA data analysis I: Doppler demodulation

    Full text link
    The orbital motion of the Laser Interferometer Space Antenna (LISA) produces amplitude, phase and frequency modulation of a gravitational wave signal. The modulations have the effect of spreading a monochromatic gravitational wave signal across a range of frequencies. The modulations encode useful information about the source location and orientation, but they also have the deleterious affect of spreading a signal across a wide bandwidth, thereby reducing the strength of the signal relative to the instrument noise. We describe a simple method for removing the dominant, Doppler, component of the signal modulation. The demodulation reassembles the power from a monochromatic source into a narrow spike, and provides a quick way to determine the sky locations and frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde
    corecore