4,700 research outputs found
On the Non-Gaussianity Observed in the COBE-DMR Sky Maps
In this paper we pursue the origin of the non-Gaussianity determined by a
bispectrum analysis of the COBE-DMR 4-year sky maps. The robustness of the
statistic is demonstrated by the rebinning of the data into 12 coordinate
systems. By computing the bispectrum statistic as a function of various data
partitions - by channel, frequency, and time interval, we show that the
observed non-Gaussian signal is driven by the 53 GHz data. This frequency
dependence strongly rejects the hypothesis that the signal is cosmological in
origin. A jack-knife analysis of the coadded 53 and 90 GHz sky maps reveals
those sky pixels to which the bispectrum statistic is particularly sensitive.
We find that by removing data from the 53 GHz sky maps for periods of time
during which a known systematic effect perturbs the 31 GHz channels, the
amplitudes of the bispectrum coefficients become completely consistent with
that expected for a Gaussian sky. We conclude that the non-Gaussian signal
detected by the normalised bispectrum statistic in the publicly available DMR
sky maps is due to a systematic artifact. The impact of removing the affected
data on estimates of the normalisation of simple models of cosmological
anisotropy is negligible.Comment: 14 pages, plus 8 Postscript and 3 GIF figures. LaTeX2e document using
AASTeX v5.0 macros. Revised version accepted for publication in the
Astrophysical Journal: small changes to the text, minor modifications to
figures 1 and
Systematic Distortion in Cosmic Microwave Background Maps
To minimize instrumentally induced systematic errors, cosmic microwave
background (CMB) anisotropy experiments measure temperature differences across
the sky using paires of horn antennas, temperature map is recovered from
temperature differences obtained in sky survey through a map-making procedure.
To inspect and calibrate residual systematic errors in recovered temperature
maps is important as most previous studies of cosmology are based on these
maps. By analyzing pixel-ring couping and latitude dependence of CMB
temperatures, we find notable systematic deviation from CMB Gaussianity in
released Wilkinson Microwave Anisotropy Probe (WMAP) maps. The detected
deviation is hard to explain by any process in the early universe and can not
be ignored for a precision cosmology study.Comment: accepted for publication in Sci China G-Phy Mech Astro
Water for utilities: climate change impacts on water quality and water availability for utilities in Europe
This report provides an assessment of the consequences of changing water availability for production of drinking water, the manufacturing industry and power production in Europe, due to climate change and socio-economic developments. The report is based up on projections of demographic and socio-economic trends and climate change impacts, according to the SRES A2 and B1 scenario’s also used by IPC
Evolution of worldwide stock markets, correlation structure and correlation based graphs
We investigate the daily correlation present among market indices of stock
exchanges located all over the world in the time period Jan 1996 - Jul 2009. We
discover that the correlation among market indices presents both a fast and a
slow dynamics. The slow dynamics reflects the development and consolidation of
globalization. The fast dynamics is associated with critical events that
originate in a specific country or region of the world and rapidly affect the
global system. We provide evidence that the short term timescale of correlation
among market indices is less than 3 trading months (about 60 trading days). The
average values of the non diagonal elements of the correlation matrix,
correlation based graphs and the spectral properties of the largest eigenvalues
and eigenvectors of the correlation matrix are carrying information about the
fast and slow dynamics of correlation of market indices. We introduce a measure
of mutual information based on link co-occurrence in networks, in order to
detect the fast dynamics of successive changes of correlation based graphs in a
quantitative way.Comment: 8 pages, 11 figure
Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data
A flexible maximum-entropy component separation algorithm is presented that
accommodates anisotropic noise, incomplete sky-coverage and uncertainties in
the spectral parameters of foregrounds. The capabilities of the method are
determined by first applying it to simulated spherical microwave data sets
emulating the COBE-DMR, COBE-DIRBE and Haslam surveys. Using these simulations
we find that is very difficult to determine unambiguously the spectral
parameters of the galactic components for this data set due to their high level
of noise. Nevertheless, we show that is possible to find a robust CMB
reconstruction, especially at the high galactic latitude. The method is then
applied to these real data sets to obtain reconstructions of the CMB component
and galactic foreground emission over the whole sky. The best reconstructions
are found for values of the spectral parameters: T_d=19 K, alpha_d=2,
beta_ff=-0.19 and beta_syn=-0.8. The CMB map has been recovered with an
estimated statistical error of \sim 22 muK on an angular scale of 7 degrees
outside the galactic cut whereas the low galactic latitude region presents
contamination from the foreground emissions.Comment: 29 pages, 25 figures, version accepted for publication in MNRAS. One
subsection and 6 figures added. Main results unchange
Detecting the Cosmic Gravitational Wave Background with the Big Bang Observer
The detection of the Cosmic Microwave Background Radiation (CMB) was one of
the most important cosmological discoveries of the last century. With the
development of interferometric gravitational wave detectors, we may be in a
position to detect the gravitational equivalent of the CMB in this century. The
Cosmic Gravitational Background (CGB) is likely to be isotropic and stochastic,
making it difficult to distinguish from instrument noise. The contribution from
the CGB can be isolated by cross-correlating the signals from two or more
independent detectors. Here we extend previous studies that considered the
cross-correlation of two Michelson channels by calculating the optimal signal
to noise ratio that can be achieved by combining the full set of interferometry
variables that are available with a six link triangular interferometer. In
contrast to the two channel case, we find that the relative orientation of a
pair of coplanar detectors does not affect the signal to noise ratio. We apply
our results to the detector design described in the Big Bang Observer (BBO)
mission concept study and find that BBO could detect a background with
.Comment: 15 pages, 12 Figure
The Planck-LFI instrument: analysis of the 1/f noise and implications for the scanning strategy
We study the impact of the 1/f noise on the PLANCK Low Frequency Instrument
(LFI) osbervations (Mandolesi et al 1998) and describe a simple method for
removing striping effects from the maps for a number of different scanning
stategies. A configuration with an angle between telescope optical axis and
spin-axis just less than 90 degrees (namely 85 degress) shows good destriping
efficiency for all receivers in the focal plane, with residual noise
degradation < 1-2 %. In this configuration, the full sky coverage can be
achieved for each channel separately with a 5 degrees spin-axis precession to
maintain a constant solar aspect angle.Comment: submitted to Astronomy and Astrophysics, 12 pages, 15 PostSript
figure
SrKZnMnAs: a ferromagnetic semiconductor with colossal magnetoresistance
A bulk diluted magnetic semiconductor (Sr,K)(Zn,Mn)As was
synthesized with decoupled charge and spin doping. It has a hexagonal
CaAlSi-type structure with the (Zn,Mn)As layer forming
a honeycomb-like network. Magnetization measurements show that the sample
undergoes a ferromagnetic transition with a Curie temperature of 12 K and
\revision{magnetic moment reaches about 1.5 /Mn under = 5 T
and = 2 K}. Surprisingly, a colossal negative magnetoresistance, defined as
, up to 38\% under a low field of = 0.1
T and to 99.8\% under = 5 T, was observed at = 2 K. The
colossal magnetoresistance can be explained based on the Anderson localization
theory.Comment: Accepted for publication in EP
LISA data analysis I: Doppler demodulation
The orbital motion of the Laser Interferometer Space Antenna (LISA) produces
amplitude, phase and frequency modulation of a gravitational wave signal. The
modulations have the effect of spreading a monochromatic gravitational wave
signal across a range of frequencies. The modulations encode useful information
about the source location and orientation, but they also have the deleterious
affect of spreading a signal across a wide bandwidth, thereby reducing the
strength of the signal relative to the instrument noise. We describe a simple
method for removing the dominant, Doppler, component of the signal modulation.
The demodulation reassembles the power from a monochromatic source into a
narrow spike, and provides a quick way to determine the sky locations and
frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde
- …