48 research outputs found

    Re-evaluating the resource potential of lomas fog oasis environments for Preceramic hunter-gatherers under past ENSO modes on the south coast of Peru

    Get PDF
    Lomas – ephemeral seasonal oases sustained by ocean fogs – were critical to ancient human ecology on the desert Pacific coast of Peru: one of humanity’s few independent hearths of agriculture and “pristine” civilisation. The role of climate change since the Late Pleistocene in determining productivity and extent of past lomas ecosystems has been much debated. Here we reassess the resource potential of the poorly studied lomas of the south coast of Peru during the long Middle Pre-ceramic period (c. 8,000 – 4,500 BP): a period critical in the transition to agriculture, the onset of modern El Niño Southern Oscillation (‘ENSO’) conditions, and eustatic sea-level rise and stabilisation and beach progradation. Our method combines vegetation survey and herbarium collection with archaeological survey and excavation to make inferences about both Preceramic hunter-gatherer ecology and the changed palaeoenvironments in which it took place. Our analysis of newly discovered archaeological sites – and their resource context – show how lomas formations defined human ecology until the end of the Middle Preceramic Period, thereby corroborating recent reconstructions of ENSO history based on other data. Together, these suggest that a five millennia period of significantly colder seas on the south coast induced conditions of abundance and seasonal predictability in lomas and maritime ecosystems, that enabled Middle Preceramic hunter-gatherers to reduce mobility by settling in strategic locations at the confluence of multiple eco-zones at the river estuaries. Here the foundations of agriculture lay in a Broad Spectrum Revolution that unfolded, not through population pressure in deteriorating environments, but rather as an outcome of resource abundance.We thank the Ministerio de Cultural del Perú for granting permission for archaeological fieldwork (Resolución Directoral Nº 933-2012-DGPC-VMPCIC/MC, 19 December 2012 and Nº 386-2014-DGPA-VMPCIC/MC, 22 August 2014) and the export of samples for dating; Don Alberto Benavides Ganoza and the people of Samaca for facilitating fieldwork; the Leverhulme Trust (grant number RPG-117) and the late Don Alberto Benavides de la Quintana (grant number RG69428) and the McDonald Institute for Archaeological Research for funding Cambridge University’s One River Archaeological Project, and the NERC Radiocarbon facility (grant number NF/2013/2/2) for funding radiocarbon dating. We also thank the Servicio Nacional Forestal y de Fauna Silvestre (SERFOR) and the Servicio Nacional de Áreas Naturales Protegidas por el Estado (SERNANP), Peru for permits for the Proyecto Kew Perú to carry out botanical and ecological survey, and Delsy Trujillo, Eric Ramírez, Consuelo Borda and other participants of the Proyecto Kew Perú: Conservación, Restauración de Hábitats y Medios de Vida Útiles, Ica, Peru.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.quascirev.2015.10.02

    APOE ɛ4 exacerbates age-dependent deficits in cortical microstructure

    Get PDF
    The apolipoprotein E ɛ4 allele is the primary genetic risk factor for the sporadic type of Alzheimer’s disease. However, the mechanisms by which apolipoprotein E ɛ4 are associated with neurodegeneration are still poorly understood. We applied the Neurite Orientation Dispersion Model to characterize the effects of apolipoprotein ɛ4 and its interactions with age and education on cortical microstructure in cognitively normal individuals. Data from 1954 participants were included from the PREVENT-Dementia and ALFA (ALzheimer and FAmilies) studies (mean age = 57, 1197 non-carriers and 757 apolipoprotein E ɛ4 carriers). Structural MRI datasets were processed with FreeSurfer v7.2. The Microstructure Diffusion Toolbox was used to derive Orientation Dispersion Index maps from diffusion MRI datasets. Primary analyses were focused on (i) the main effects of apolipoprotein E ɛ4, and (ii) the interactions of apolipoprotein E ɛ4 with age and education on lobar and vertex-wise Orientation Dispersion Index and implemented using Permutation Analysis of Linear Models. There were apolipoprotein E ɛ4 × age interactions in the temporo-parietal and frontal lobes, indicating steeper age-dependent Orientation Dispersion Index changes in apolipoprotein E ɛ4 carriers. Steeper age-related Orientation Dispersion Index declines were observed among apolipoprotein E ɛ4 carriers with lower years of education. We demonstrated that apolipoprotein E ɛ4 worsened age-related Orientation Dispersion Index decreases in brain regions typically associated with atrophy patterns of Alzheimer’s disease. This finding also suggests that apolipoprotein E ɛ4 may hasten the onset age of dementia by accelerating age-dependent reductions in cortical Orientation Dispersion Index

    The molecular logic of endocannabinoid signalling

    Full text link
    The endocannabinoids are a family of lipid messengers that engage the cell surface receptors that are targeted by Δ9-tetrahydrocannabinol, the active principle in marijuana (Cannabis). They are made on demand through cleavage of membrane precursors and are involved in various short-range signalling processes. In the brain, they combine with CB1 cannabinoid receptors on axon terminals to regulate ion channel activity and neurotransmitter release. Their ability to modulate synaptic efficacy has a wide range of functional consequences and provides unique therapeutic possibilities. © 2003, Nature Publishing Group. All rights reserved

    Drug delivery technologies and stem cells for tissue repair and regeneration

    No full text
    In the last few years several technologies are being developed for eventually repairing or replacing damaged or injured tissues and even organs. Some of these emerging technologies include the design and development of new biomaterials, the optimization of nano- and micro-technologies for drug and cell delivery, the use of autologous proteins or the application of stem cells as therapeutics. Thus, several types of stem cells, e.g. ESCs, iPSCs, MSCs, CD133+ stem cells are being evaluated for tissue regeneration purposes. The present review describes some of these emerging technologies and discusses their potential benefits and challenges

    Reversal of dopamine D(2) receptor responses by an anandamide transport inhibitor.

    No full text
    corecore