276 research outputs found

    Molecular orientational dynamics of the endohedral fullerene Sc3_{3}N@C80_{80} as probed by 13^{13}C and 45^{45}Sc NMR

    Get PDF
    We measure 13C and 45Sc NMR lineshapes and spin-lattice relaxation times (T1) to probe the orientational dynamics of the endohedral metallofullerene Sc3N@C80. The measurements show an activated behavior for molecular reorientations over the full temperature range with a similar behavior for the temperature dependence of the 13C and 45Sc data. Combined with spectral data from Magic Angle Spinning (MAS) NMR, the measurements can be interpreted to mean the motion of the encapsulated Sc3N molecule is independent of that of the C80 cage, although this requires the similar temperature dependence of the 13C and 45Sc spin-lattice relaxation times to be coincidental. For the Sc3N to be fixed to the C80 cage, one must overcome the symmetry breaking effect this has on the Sc3N@C80 system since this would result in more than the observed two 13C lines.Comment: 6 pages, 5 figure

    Longitudinal Study of Primary HIV-1 Isolates in Drug-Naïve Individuals Reveals the Emergence of Variants Sensitive to Anti-HIV-1 Monoclonal Antibodies

    Get PDF
    To study how virus evolution affects neutralization sensitivity and to determine changes that occur in and around epitopes, we tested the ability of 13 anti-HIV-1 gp120 (anti-V2, anti-V3, anti-CD4bd and anti-carbohydrate) human monoclonal antibodies (mAbs) to neutralize sequential viruses obtained from five HIV-1 chronically infected drug naïve individuals. Overall, primary viruses collected from patients at first visit were resistant to neutralization by all anti-HIV-1 mAbs with the exception of one virus sensitive to IgG1b12. Four of the five patients' viruses evolved increased sensitivity to neutralization by anti-V3 mAbs. Virus collected from a patient obtained 31 months later, evolved increased sensitivity to anti-V2, anti-V3, and anti-CD4bd mAbs. Furthermore, the anti-V2 and anti-CD4bd mAbs also exhibited increased neutralization capacities against virus collected from a patient 29 months later. Of the seven anti-V3 mAbs, five showed increased potency to neutralize the evolved virus from a patient collected after 11 months, and three exhibited increased potency against viruses from two patients collected 29 and 36 months later. Anti-V3 mAbs exhibited the most breadth and potency in neutralizing the evolving viruses. Sequence analysis of the envelope regions revealed amino acid conservation within the V3 loop, while most of the changes identified occurred outside the core epitopes and in particular within the C3 region; these may account for increased neutralization sensitivity. These studies demonstrate that in vivo, HIV-1 can evolve increased neutralization sensitivity to mAbs and that the spectrum of neutralization capacities by mAbs can be broader when studied in longitudinal analysis

    X-ray Imaging of Planetary Nebulae with Wolf-Rayet-type Central Stars: Detection of the Hot Bubble in NGC 40

    Full text link
    We present the results of Chandra X-ray Observatory (CXO) observations of the planetary nebulae (PNs) NGC 40 and Hen 2-99. Both PNs feature late-type Wolf-Rayet central stars that are presently driving fast ~1000 km/s, massive winds into denser, slow-moving (~10 km/s) material ejected during recently terminated asymptotic giant branch (AGB) evolutionary phases. Hence, these observations provide key tests of models of wind-wind interactions in PNs. In NGC 40, we detect faint, diffuse X-ray emission distributed within a partial annulus that lies nested within a ~40'' diameter ring of nebulosity observed in optical and near-infrared images. Hen 2-99 is undetected. The inferred X-ray temperature (T_X ~10^6 K) and luminosity (L_X ~ 2 X 10^30 ergs/s) of NGC 40 are the lowest measured thus far for any PN displaying diffuse X-ray emission. These results, combined with the ring-like morphology of the X-ray emission from NGC 40, suggest that its X-ray emission arises from a ``hot bubble'' that is highly evolved and is generated by a shocked, quasi-spherical fast wind from the central star, as opposed to AGB or post-AGB jet activity. In constrast, the lack of detectable X-ray emission from Hen 2-99 suggests that this PN has yet to enter a phase of strong wind-wind shocks.Comment: 15 pages, 5 figures to appear in The Astrophysical Journa

    Morphology and Composition of the Helix Nebula

    Get PDF
    We present new narrow-band filter imagery in H-alpha and [N II] 6584 along with UV and optical spectrophotometry measurements from 1200 to 9600 Angstroms of NGC 7293, the Helix Nebula, a nearby, photogenic planetary nebula of large diameter and low surface brightness. Detailed models of the observable ionized nebula support the recent claim that the Helix is actually a flattened disk whose thickness is roughly one-third its diameter with an inner region containing hot, highly ionized gas which is generally invisible in narrow-band images. The outer visible ring structure is of lower ionization and temperature and is brighter because of a thickening in the disk. We also confirm a central star effective temperature and luminosity of 120,000K and 100L_sun, and we estimate a lower limit to the nebular mass to be 0.30M_sun. Abundance measurements indicate the following values: He/H=0.12 (+/-0.017), O/H=4.60x10^-4 (+/-0.18), C/O=0.87 (+/-0.12), N/O=0.54 (+/-0.14), Ne/O=0.33 (+/-0.04), S/O=3.22x10^-3 (+/-0.26), and Ar/O=6.74x10^-3 (+/-0.76). Our carbon abundance measurements represent the first of their kind for the Helix Nebula. The S/O ratio which we derive is anomalously low; such values are found in only a few other planetary nebulae. The central star properties, the super-solar values of He/H and N/O, and a solar level of C/O are consistent with a 6.5M_sun progenitor which underwent three phases of dredge-up and hot bottom burning before forming the planetary nebula.Comment: 50-page manuscript plus 11 postscript figures. This revised version corrects a typo in earlier submission. Nothing else has changed. Accepted for publication in the Astrophysical Journa

    Far-UV Spectroscopic Analyses of Four Central Stars of Planetary Nebulae

    Full text link
    We analyze the Far-UV/UV spectra of four central stars of planetary nebulae with strong wind features -- NGC 2371, Abell 78, IC 4776 and NGC 1535, and derive their photospheric and wind parameters by modeling high-resolution FUSE (Far-Ultraviolet Spectroscopic Explorer) data in the Far-UV and HST-STIS and IUE data in the UV with spherical non-LTE line-blanketed model atmospheres. Abell 78 is a hydrogen-deficient transitional [WR]-PG 1159 object, and we find NGC 2371 to be in the same stage, both migrating from the constant-luminosity phase to the white dwarf cooling sequence with Teff ~= 120 kK, Mdot ~= 5x10^-8 Msun/yr. NGC 1535 is a ``hydrogen-rich'' O(H) CSPN, and the exact nature of IC 4776 is ambiguous, although it appears to be helium burning. Both objects lie on the constant-luminosity branch of post-AGB evolution and have Teff ~= 65 kK, Mdot ~= 1x10^-8 Msun/yr. Thus, both the H-rich and H-deficient channels of PN evolution are represented in our sample. We also investigate the effects of including higher ionization stages of iron (up to FeX) in the model atmosphere calculations of these hot objects (usually neglected in previous analyses), and find iron to be a useful diagnostic of the stellar parameters in some cases. The Far-UV spectra of all four objects show evidence of hot (T ~ 300 K) molecular hydrogen in their circumstellar environments.Comment: 38 pages, 8 figures (6 color). Accepted for publication in Ap

    High-velocity collimated outflows in planetary nebulae: NGC 6337, He 2-186, and K 4-47

    Full text link
    We have obtained narrow-band images and high-resolution spectra of the planetary nebulae NGC 6337, He 2-186, and K 4-47, with the aim of investigating the relation between their main morphological components and several low-ionization features present in these nebulae. The data suggest that NGC 6337 is a bipolar PN seen almost pole on, with polar velocities higher than 200 km/s. The bright inner ring of the nebula is interpreted to be the "equatorial" density enhancement. It contains a number of low-ionization knots and outward tails that we ascribe to dynamical instabilities leading to fragmentation of the ring or transient density enhancements due to the interaction of the ionization front with previous density fluctuations in the ISM. The lobes show a pronounced point-symmetric morphology and two peculiar low-ionization filaments whose nature remains unclear. The most notable characteristic of He 2-186 is the presence of two high-velocity (higher than 135 km/s) knots from which an S-shaped lane of emission departs toward the central star. K 4-47 is composed of a compact core and two high-velocity, low-ionization blobs. We interpret the substantial broadening of line emission from the blobs as a signature of bow shocks, and using the modeling of Hartigan, Raymond, & Hartman (1987), we derive a shock velocity of 150 km/s and a mild inclination of the outflow on the plane of the sky. We discuss possible scenarios for the formation of these nebulae and their low-ionization features. In particular, the morphology of K 4-47 hardly fits into any of the usually adopted mass-loss geometries for single AGB stars. Finally, we discuss the possibility that point-symmetric morphologies in the lobes of NGC 6337 and the knots of He 2-186 are the result of precessing outflows from the central stars.Comment: 16 pages plus 7 figures, ApJ accepted. Also available at http://www.iac.es/publicaciones/preprints.htm

    Theory of vortex excitation imaging via an NMR relaxation measurement

    Full text link
    The temperature dependence of the site-dependent nuclear spin relaxation time T_1 around vortices is studied in s-wave and d-wave superconductors.Reflecting low energy electronic excitations associated with the vortex core, temperature dependences deviate from those of the zero-field case, and T_1 becomes faster with approaching the vortex core. In the core region, T_1^{-1} has a new peak below T_c. The NMR study by the resonance field dependence may be a new method to prove the spatial resolved vortex core structure in various superconductors.Comment: 5 pages, 3 figure

    V605 Aql: The Older Twin of Sakurai's Object

    Get PDF
    New optical spectra have been obtained with VLT/FORS2 of the final helium shell flash (FF) star, V605 Aql, which peaked in brightness in 1919. New models suggest that this star is experiencing a very late thermal pulse. The evolution to a cool luminous giant and then back to a compact hot star takes place in only a few years. V605 Aql, the central star of the Planetary Nebula (PN), A58, has evolved from Teff∼_{eff}\sim5000 K in 1921 to ∼\sim95,000 K today. There are indications that the new FF star, Sakurai's Object (V4334 Sgr), which appeared in 1996, is evolving along a similar path. The abundances of Sakurai's Object today and V605 Aql 80 years ago mimic the hydrogen deficient R Coronae Borealis (RCB) stars with 98% He and 1% C. The new spectra show that V605 Aql has stellar abundances similar to those seen in Wolf-Rayet [WC] central stars of PNe with ~55% He, and ~40% C. The stellar spectrum of V605 Aql can be seen even though the star is not directly detected. Therefore, we may be seeing the spectrum in light scattered around the edge of a thick torus of dust seen edge-on. In the present state of evolution of V605 Aql, we may be seeing the not too distant future of Sakurai's Object.Comment: 12 pages, 1 figure, ApJ Letters in pres
    • …
    corecore