258 research outputs found

    The intrinsic features of the specific heat at half-filled Landau levels of two-dimensional electron systems

    Full text link
    The specific heat capacity of a two-dimensional electron gas is derived for two types of the density of states, namely, the Dirac delta function spectrum and that based on a Gaussian function. For the first time, a closed form expression of the specific heat for each case is obtained at half-filling. When the chemical potential is temperature-independent, the temperature is calculated at which the specific heat is a maximum. Here the effects of the broadening of the Landau levels are distinguished from those of the different filling factors. In general, the results derived herein hold for any thermodynamic system having similar resonant states.Comment: 11 pages, 1 figure, to appear in J Low Temp Phys (2010

    Generation of coherent terahertz pulses in Ruby at room temperature

    Get PDF
    We have shown that a coherently driven solid state medium can potentially produce strong controllable short pulses of THz radiation. The high efficiency of the technique is based on excitation of maximal THz coherence by applying resonant optical pulses to the medium. The excited coherence in the medium is connected to macroscopic polarization coupled to THz radiation. We have performed detailed simulations by solving the coupled density matrix and Maxwell equations. By using a simple VV-type energy scheme for ruby, we have demonstrated that the energy of generated THz pulses ranges from hundreds of pico-Joules to nano-Joules at room temperature and micro-Joules at liquid helium temperature, with pulse durations from picoseconds to tens of nanoseconds. We have also suggested a coherent ruby source that lases on two optical wavelengths and simultaneously generates THz radiation. We discussed also possibilities of extension of the technique to different solid-state materials

    Why Nature has made a choice of one time and three space coordinates?

    Get PDF
    We propose a possible answer to one of the most exciting open questions in physics and cosmology, that is the question why we seem to experience four- dimensional space-time with three ordinary and one time dimensions. We have known for more than 70 years that (elementary) particles have spin degrees of freedom, we also know that besides spin they also have charge degrees of freedom, both degrees of freedom in addition to the position and momentum degrees of freedom. We may call these ''internal degrees of freedom '' the ''internal space'' and we can think of all the different particles, like quarks and leptons, as being different internal states of the same particle. The question then naturally arises: Is the choice of the Minkowski metric and the four-dimensional space-time influenced by the ''internal space''? Making assumptions (such as particles being in first approximation massless) about the equations of motion, we argue for restrictions on the number of space and time dimensions. (Actually the Standard model predicts and experiments confirm that elementary particles are massless until interactions switch on masses.) Accepting our explanation of the space-time signature and the number of dimensions would be a point supporting (further) the importance of the ''internal space''.Comment: 13 pages, LaTe

    Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems

    Full text link
    A general electrodynamic theory of a grating coupled two dimensional electron system (2DES) is developed. The 2DES is treated quantum mechanically, the grating is considered as a periodic system of thin metal strips or as an array of quantum wires, and the interaction of collective (plasma) excitations in the system with electromagnetic field is treated within the classical electrodynamics. It is assumed that a dc current flows in the 2DES. We consider a propagation of an electromagnetic wave through the structure, and obtain analytic dependencies of the transmission, reflection, absorption and emission coefficients on the frequency of light, drift velocity of 2D electrons, and other physical and geometrical parameters of the system. If the drift velocity of 2D electrons exceeds a threshold value, a current-driven plasma instability is developed in the system, and an incident far infrared radiation is amplified. We show that in the structure with a quantum wire grating the threshold velocity of the amplification can be essentially reduced, as compared to the commonly employed metal grating, down to experimentally achievable values. Physically this is due to a considerable enhancement of the grating coupler efficiency because of the resonant interaction of plasma modes in the 2DES and in the grating. We show that tunable far infrared emitters, amplifiers and generators can thus be created at realistic parameters of modern semiconductor heterostructures.Comment: 28 pages, 15 figures, submitted to Phys. Rev.

    The effect of oscillating Fermi energy on the line shape of the Shubnikov-de Haas oscillation in a two dimensional electron gas

    Full text link
    The line shape of the Shubnikov-de Haas (SdH) oscillation has been analyzed in detail for a GaAs/AlGaAs two-dimensional electron gas. The line shape, or equivalently the behavior of the Fourier components, of the experimentally observed SdH oscillation is well reproduced by the sinusoidal density of states at the Fermi energy that oscillates with a magnetic field in a saw-tooth shape to keep the electron density constant. This suggests that the broadening of each Landau level by disorder is better described by a Gaussian than by a Lorentzian.Comment: 7 pages,6 figures, minor revision

    Changes in total plasma and serum N-glycome composition and patient-controlled analgesia after major abdominal surgery

    Get PDF
    Systemic inflammation participates to the complex healing process occurring after major surgery, thus directly affecting the surgical outcome and patient recovery. Total plasma N-glycome might be an indicator of inflammation after major surgery, as well as an anti-inflammatory therapy response marker, since protein glycosylation plays an essential role in the inflammatory cascade. Therefore, we assessed the effects of surgery on the total plasma N-glycome and the association with self-administration of postoperative morphine in two cohorts of patients that underwent major abdominal surgery. We found that plasma N-glycome undergoes significant changes one day after surgery and intensifies one day later, thus indicating a systemic physiological response. In particular, we observed the increase of bisialylated biantennary glycan, A2G2S[3,6]2, 12 hours after surgery, which progressively increased until 48 postoperative hours. Most changes occurred 24 hours after surgery with the decrease of most core-fucosylated biantennary structures, as well as the increase in sialylated tetraantennary and FA3G3S[3,3,3]3 structures. Moreover, we observed a progressive increase of sialylated triantennary and tetraantennary structures two days after surgery, with a concomitant decrease of the structures containing bisecting N-acetylglucosamine along with bi- and trisialylated triantennary glycans. We did not find any statistically significant association between morphine consumption and plasma N-glycome

    IgG N-glycans are associated with prevalent and incident complications of type 2 diabetes

    Get PDF
    Aims/Hypothesis:Inflammation is important in the development of type 2 diabetes complications. The N-glycosylation of IgG influences its role in inflammation. To date, the association of plasma IgG N-glycosylation with type 2 diabetes complications has not been extensively investigated. We hypothesised that N-glycosylation of IgG may be related to the development of complications of type 2 diabetes. Methods: In three independent type 2 diabetes cohorts, plasma IgG N-glycosylation was measured using ultra performance liquid chromatography (DiaGene n = 1815, GenodiabMar n = 640) and mass spectrometry (Hoorn Diabetes Care Study n = 1266). We investigated the associations of IgG N-glycosylation (fucosylation, galactosylation, sialylation and bisection) with incident and prevalent nephropathy, retinopathy and macrovascular disease using Cox- and logistic regression, followed by meta-analyses. The models were adjusted for age and sex and additionally for clinical risk factors. Results: IgG galactosylation was negatively associated with prevalent and incident nephropathy and macrovascular disease after adjustment for clinical risk factors. Sialylation was negatively associated with incident diabetic nephropathy after adjustment for clinical risk factors. For incident retinopathy, similar associations were found for galactosylation, adjusted for age and sex. Conclusions: We showed that IgG N-glycosylation, particularly galactosylation and to a lesser extent sialylation, is associated with a higher prevalence and future development of macro- and microvascular complications of diabetes. These findings indicate the predictive potential of IgG N-glycosylation in diabetes complications and should be analysed further in additional large cohorts to obtain the power to solidify these conclusions.</p
    corecore