22 research outputs found

    User Guide to the PDS Dataset for the Cassini Composite Infrared Spectrometer (CIRS)

    Get PDF
    This User Guide to the Cassini Composite Infrared Spectrometer (CIRS) has been written with two communities in mind. First and foremost, scientists external to the Cassini Project who seek to use the CIRS data as archived in the Planetary Data System (PDS). In addition, it is intended to be a comprehensive reference guide for those internal to the CIRS team

    The Comparative Exploration of the Ice Giant Planets with Twin Spacecraft: Unveiling the History of our Solar System

    Full text link
    In the course of the selection of the scientific themes for the second and third L-class missions of the Cosmic Vision 2015-2025 program of the European Space Agency, the exploration of the ice giant planets Uranus and Neptune was defined "a timely milestone, fully appropriate for an L class mission". Among the proposed scientific themes, we presented the scientific case of exploring both planets and their satellites in the framework of a single L-class mission and proposed a mission scenario that could allow to achieve this result. In this work we present an updated and more complete discussion of the scientific rationale and of the mission concept for a comparative exploration of the ice giant planets Uranus and Neptune and of their satellite systems with twin spacecraft. The first goal of comparatively studying these two similar yet extremely different systems is to shed new light on the ancient past of the Solar System and on the processes that shaped its formation and evolution. This, in turn, would reveal whether the Solar System and the very diverse extrasolar systems discovered so far all share a common origin or if different environments and mechanisms were responsible for their formation. A space mission to the ice giants would also open up the possibility to use Uranus and Neptune as templates in the study of one of the most abundant type of extrasolar planets in the galaxy. Finally, such a mission would allow a detailed study of the interplanetary and gravitational environments at a range of distances from the Sun poorly covered by direct exploration, improving the constraints on the fundamental theories of gravitation and on the behaviour of the solar wind and the interplanetary magnetic field.Comment: 29 pages, 4 figures; accepted for publication on the special issue "The outer Solar System X" of the journal Planetary and Space Science. This article presents an updated and expanded discussion of the white paper "The ODINUS Mission Concept" (arXiv:1402.2472) submitted in response to the ESA call for ideas for the scientific themes of the future L2 and L3 space mission

    The global energy balance of Titan

    Get PDF
    The global energy budget of planets and their moons is a critical factor to influence the climate change on these objects. Here we report the first measurement of the global emitted power of Titan. Long-term (2004–2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 ± 0.01) × 10^(14) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 6.0%

    PLATO camera ghosts: simulations and measurements on the engineering model (EM)

    Get PDF
    The PLAnetary Transits and Oscillations of stars mission (PLATO) is the M3 mission in ESA’s Cosmic Vision 2015-2025 Programme, see Rauer et al. (2014).1 The PLATO mission aims at detecting and characterizing extrasolar planetary systems, including terrestrial exoplanets around bright solar-type stars up to the habitable zone. To be able to perform the required high precision photometric monitoring of the large target stars sample, PLATO is based on a multi-telescope configuration consisting of 26 Cameras, so as to provide simultaneously a large field of view and a large collecting aperture. The optical design is identical for all cameras and consists of a 6-lens dioptric design with a 120 mm entrance pupil and an effective field of view of more than 1000 square degrees. As for every optical system, especially dioptric ones, the presence of optical ghosts can dramatically affect the scientific observations. Thanks to the application of an excellent anti-reflection coating, PLATO’s cameras are by design very insensitive to ghosts. However, the residual faint back reflections focused on the detectors have to be simulated and considered during science operation (target selection) and in data correction algorithms. This article describes the different optical analyses performed to estimate the importance of ghosts in PLATO’s cameras, as well as the simulations performed to support the preparation of the test campaign on the first PLATO camera: the engineering model. Finally, the test execution, data analysis and results are presented and compared to the simulated data

    PLATO EM first cryogenic vacuum test campaign PSF results

    Get PDF
    PLATO (PLAnetary Transits and Oscillations of stars) is a European Space Agency medium class mission, whose launch is foreseen for 2026. Its primary goal is to discover and characterise terrestrial exoplanets orbiting the habitable zone of their host stars. This goal will be reached with a set of 26 wide field-of-view cameras mounted on a common optical bench. Here we show some results of the first cryogenic vacuum test campaign made on the Engineering Model (EM) of one PLATO camera, performed at the Netherlands Institute for Space Research (SRON). In particular we present the search for the best focus temperature, which was done first by using a Hartmann mask, and then by maximizing the ensquared energy fractions of the point spread functions (PSFs) on the entire field of view taken at different temperature plateaus. Furthermore we present the PSF properties of the EM at the nominal focus temperature over all the field of view, focusing on the ensquared energy fractions. The Engineering Model camera was successfully integrated and validated under cryo-vacuum tests, allowing the mission to pass ESA’s Critical Milestone, and confirming the mission is on track for launch in 2026
    corecore