1,675 research outputs found

    On the problem of novel composite materials development for car brake rotor

    Get PDF
    This paper presents a study of the potential materials that are suitable for the development of the automotive brake disc. Two new materials are proposed as an alternative material to the conventionally used gray cast iron for the disc brake, which are namely Metal Matrix Composite (MMC) and Functionally Graded Material (FGM). MMCs with ceramic particulate reinforcement are found to have a low density and high thermal conductivity compared to the cast irons. Two particulate reinforcements, Al2O3 and SiC were being considered for MMC. On the other hand, FGM has demonstrated high thermal shock resistance, better wear resistance and low density. Preliminary investigation indicated that MMC acquired improved hardness property. Meanwhile, the hardness property of FGM with Al2O3 and Al2TiO5 as layered composites materials can be further improved

    A random matrix approach to decoherence

    Get PDF
    In order to analyze the effect of chaos or order on the rate of decoherence in a subsystem, we aim to distinguish effects of the two types of dynamics by choosing initial states as random product states from two factor spaces representing two subsystems. We introduce a random matrix model that permits to vary the coupling strength between the subsystems. The case of strong coupling is analyzed in detail, and we find no significant differences except for very low-dimensional spaces.Comment: 11 pages, 5 eps-figure

    The multilevel trigger system of the DIRAC experiment

    Get PDF
    The multilevel trigger system of the DIRAC experiment at CERN is presented. It includes a fast first level trigger as well as various trigger processors to select events with a pair of pions having a low relative momentum typical of the physical process under study. One of these processors employs the drift chamber data, another one is based on a neural network algorithm and the others use various hit-map detector correlations. Two versions of the trigger system used at different stages of the experiment are described. The complete system reduces the event rate by a factor of 1000, with efficiency ≥\geq95% of detecting the events in the relative momentum range of interest.Comment: 21 pages, 11 figure

    Simulation of static and random errors on Grover's search algorithm implemented in a Ising nuclear spin chain quantum computer with few qubits

    Full text link
    We consider Grover's search algorithm on a model quantum computer implemented on a chain of four or five nuclear spins with first and second neighbour Ising interactions. Noise is introduced into the system in terms of random fluctuations of the external fields. By averaging over many repetitions of the algorithm, the output state becomes effectively a mixed state. We study its overlap with the nominal output state of the algorithm, which is called fidelity. We find either an exponential or a Gaussian decay for the fidelity as a function of the strength of the noise, depending on the type of noise (static or random) and whether error supression is applied (the 2pi k-method) or not.Comment: 18 pages, 8 figures, extensive revision with new figure

    Fidelity and Purity Decay in Weakly Coupled Composite Systems

    Full text link
    We study the stability of unitary quantum dynamics of composite systems (for example: central system + environment) with respect to weak interaction between the two parts. Unified theoretical formalism is applied to study different physical situations: (i) coherence of a forward evolution as measured by purity of the reduced density matrix, (ii) stability of time evolution with respect to small coupling between subsystems, and (iii) Loschmidt echo measuring dynamical irreversibility. Stability has been measured either by fidelity of pure states of a composite system, or by the so-called reduced fidelity of reduced density matrices within a subsystem. Rigorous inequality among fidelity, reduced-fidelity and purity is proved and a linear response theory is developed expressing these three quantities in terms of time correlation functions of the generator of interaction. The qualitatively different cases of regular (integrable) or mixing (chaotic in the classical limit) dynamics in each of the subsystems are discussed in detail. Theoretical results are demonstrated and confirmed in a numerical example of two coupled kicked tops.Comment: 21 pages, 12 eps figure

    De Novo Occurrence of a Variant in ARL3 and Apparent Autosomal Dominant Transmission of Retinitis Pigmentosa.

    Get PDF
    BackgroundRetinitis pigmentosa is a phenotype with diverse genetic causes. Due to this genetic heterogeneity, genome-wide identification and analysis of protein-altering DNA variants by exome sequencing is a powerful tool for novel variant and disease gene discovery. In this study, exome sequencing analysis was used to search for potentially causal DNA variants in a two-generation pedigree with apparent dominant retinitis pigmentosa.MethodsVariant identification and analysis of three affected members (mother and two affected offspring) was performed via exome sequencing. Parental samples of the index case were used to establish inheritance. Follow-up testing of 94 additional retinitis pigmentosa pedigrees was performed via retrospective analysis or Sanger sequencing.Results and conclusionsA total of 136 high quality coding variants in 123 genes were identified which are consistent with autosomal dominant disease. Of these, one of the strongest genetic and functional candidates is a c.269A>G (p.Tyr90Cys) variant in ARL3. Follow-up testing established that this variant occurred de novo in the index case. No additional putative causal variants in ARL3 were identified in the follow-up cohort, suggesting that if ARL3 variants can cause adRP it is an extremely rare phenomenon

    Signatures of the correlation hole in total and partial cross sections

    Full text link
    In a complex scattering system with few open channels, say a quantum dot with leads, the correlation properties of the poles of the scattering matrix are most directly related to the internal dynamics of the system. We may ask how to extract these properties from an analysis of cross sections. In general this is very difficult, if we leave the domain of isolated resonances. We propose to consider the cross correlation function of two different elastic or total cross sections. For these we can show numerically and to some extent also analytically a significant dependence on the correlations between the scattering poles. The difference between uncorrelated and strongly correlated poles is clearly visible, even for strongly overlapping resonances.Comment: 25 pages, 13 Postscript figures, typos corrected and references adde
    • …
    corecore