7 research outputs found

    ΠšΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Π΅ ΠΊΠ°Ρ€Π±ΠΎΠ½-ΠΊΠ°Ρ€Π±ΠΎΠ½ Ρ‚Π° ΠΊΠ°Ρ€Π±ΠΎΠ½-Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ°Ρ‚ΠΎΠΌ спряТСнС приєднання n-Π·Π°ΠΌΡ–Ρ‰Π΅- Π½ΠΈΡ… ΠΌΠ°Π»Π΅Ρ—Π½Ρ–ΠΌΡ–Π΄Ρ–Π² Π΄ΠΎ 4Π½-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»-3-Ρ‚Ρ–ΠΎΠ»Ρ–Π², 2-Π°ΠΌΡ–Π½ΠΎ-1,3-Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Π², 1Π½-Ρ–ΠΌΡ–Π΄Π°Π·ΠΎΠ»Ρƒ Ρ‚Π° 2-Ρ„Π΅- Π½Ρ–Π»Ρ–Π½Π΄ΠΎΠ»Ρ–Π·ΠΈΠ½Ρƒ Π² присутності кислот Π»ΡŒΡŽΡ—ΡΠ°

    Get PDF
    In the paper the cheap and effective method of the synthesis of 3-heteryl substituted succinimides via catalytic Michael addition are presented. Lewis acids have been found to be effective catalysts for conjugate addition of N-aryl substituted maleimides to the heterocycles with donor-heteroatoms or CH-active function. Catalytic reactions proceed in mild conditions without formation of by-products that are often present in the classical Michael reaction. The compounds synthesized are promising and interesting substrates for biological evaluation since numerous natural products, drugs and drug candidates bear the succinimide core. Moreover, regioselectivity of addition of ambident heterocyclic nucleophiles such as 4H-1,2,4-triazole-3-thiole, 1H-imidazole and 2-amino- 1,3-thiazole to maleimides have been investigated. Lewis acids such as aluminium chloride, zinc chloride and lithium perchlorate have been tested on different heterocyclic substrates as catalysts. Interestingly, depending on nucleophilicity of the substrate different Lewis acids have shown significantly varying efficacy. In this respect aluminium chloride was identified as the most effective catalyst for C–C addition among the Lewis acids tested. Lithium perchlorate appears to be the most efficient in the case of C–N addition with the endocyclic nitrogen atom of the hererocycle. Zinc chloride shows a good catalytic efficacy in addition of maleimides to the exocyclic amino group of 2-aminothiazole. Finally, the advantages of the catalytic approach developed such as mild reaction conditions, easy handling, low toxicity of the catalysts and their low cost make this method useful for the synthesis of new 3-heteryl substituted succinimides, which, in turn, are interesting substrates in medicinal chemistry.Π’ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн простой ΠΈ эффСктивный экономный ΠΌΠ΅Ρ‚ΠΎΠ΄ синтСза 3-Π³Π΅Ρ‚Π°Ρ€ΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΈΠ΄ΠΈΠ½-2,5-Π΄ΠΈΠΎΠ½ΠΎΠ² с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ каталитичСской Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠœΠΈΡ…Π°ΡΠ»Ρ. Π’ качСствС ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ кислоты Π›ΡŒΡŽΠΈΡΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΠΊΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² рСакциях присоСдинСния N-Π°Ρ€ΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠ°Π»Π΅ΠΈΠ½ΠΈΠΌΠΈΠ΄ΠΎΠ² ΠΊ Π΄ΠΎΠ½ΠΎΡ€Π½Ρ‹ΠΌ Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Π°ΠΌ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‚ Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΈ мягких условиях, Ρ‡Ρ‚ΠΎ позволяСт ΠΈΠ·Π±Π΅Π³Π°Ρ‚ΡŒ образования Π½Π΅ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ². Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ соСдинСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ пСрспСктивными Π² области мСдицинской Ρ…ΠΈΠΌΠΈΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ…ΠΎΡ€ΠΎΡˆΠΎ извСстно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ΄ΠΈΠ½-2,5-Π΄ΠΈΠΎΠ½ΠΎΠ² ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ, антиэпилСптичСской ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ. Π’Π°ΠΊΠΆΠ΅ извСстны ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ происхоТдСния, содСрТащиС сукцинимидноС ядро, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ эффСктивными ΠΈ сСлСктивными Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ°ΠΌΠΈ. Π’ прСдставлСнной Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π»Π° исслСдована Ρ€Π΅Π³ΠΈΠΎΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ присоСдинСния ΠΌΠ°Π»Π΅ΠΈΠ½ΠΈΠΌΠΈΠ΄ΠΎΠ² ΠΊ гСтСроцикличСским субстратам. Π’ качСствС ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Ρ…Π»ΠΎΡ€ΠΈΠ΄Ρ‹ алюминия, Ρ†ΠΈΠ½ΠΊΠ° ΠΈ ΠΏΠ΅Ρ€Ρ…Π»ΠΎΡ€Π°Ρ‚ лития. Оказалось, Ρ‡Ρ‚ΠΎ Π°ΠΏΡ€ΠΎΠ±ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ кислоты Π›ΡŒΡŽΠΈΡΠ° ΠΈΠΌΠ΅ΡŽΡ‚ Ρ€Π°Π·Π½ΡƒΡŽ ΠΊΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… субстратах, Ρ‡Ρ‚ΠΎ, вСроятно, зависит ΠΎΡ‚ Π½ΡƒΠΊΠ»Π΅ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Π°. НаиболСС эффСктивным ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠΌ для Б–Б присоСдинСния оказался Ρ…Π»ΠΎΡ€ΠΈΠ΄ алюминия, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Ρ…Π»ΠΎΡ€Π°Ρ‚ лития ΠΏΠΎΠΊΠ°Π·Π°Π» Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΠΊΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ Б–N присоСдинСнии, Π° Ρ…Π»ΠΎΡ€ΠΈΠ΄ Ρ†ΠΈΠ½ΠΊΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ высокиС Π²Ρ‹Ρ…ΠΎΠ΄Ρ‹ Π°Π΄Π΄ΡƒΠΊΡ‚ΠΎΠ² Π² случаС присоСдинСния ΠΌΠ°Π»Π΅ΠΈΠ½ΠΈΠΌΠΈΠ΄ΠΎΠ² ΠΊ экзоцикличСской Π°ΠΌΠΈΠ½ΠΎΠ³Ρ€ΡƒΠΏΠΏΠ΅ 2-Π°ΠΌΠΈΠ½ΠΎΡ‚ΠΈΠ°Π·ΠΎΠ»Π°. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ здСсь ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ каталитичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ позволяСт ΡΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹Π΅ 3-Π³Π΅Ρ‚Π°Ρ€ΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Π΅ ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΈΠ΄ΠΈΠ½-2,5-Π΄ΠΈΠΎΠ½Ρ‹.Π’ Π΄Π°Π½Ρ–ΠΉ ΠΏΡƒΠ±Π»Ρ–ΠΊΠ°Ρ†Ρ–Ρ— прСдставлСний простий Ρ‚Π° Π΅ΠΊΠΎΠ½ΠΎΠΌΠ½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ синтСзу ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 3-Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… ΠΏΡ–Ρ€ΠΎΠ»Ρ–Π΄ΠΈΠ½-2,5-Π΄Ρ–ΠΎΠ½Ρ–Π² Π·Π° допомогою ΠΊΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½ΠΎΡ— Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ— ΠœΡ–Ρ…Π°Π΅Π»Ρ. Π’ якості ΠΊΠ°Ρ‚Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€Ρ–Π² Π±ΡƒΠ»ΠΈ використані кислоти Π›ΡŒΡŽΡ—ΡΠ°, які ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ високу ΠΊΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Ρƒ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρƒ рСакціях приєднання N-Π°Ρ€ΠΈΠ»Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… ΠΌΠ°Π»Π΅Ρ—Π½Ρ–ΠΌΡ–Π΄Ρ–Π² Π΄ΠΎ Π΄ΠΎΠ½ΠΎΡ€Π½ΠΈΡ… Ρ‚Π° БН-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρ–Π². ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ– Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ— ΠΏΠ΅Ρ€Π΅Π±Ρ–Π³Π°ΡŽΡ‚ΡŒ Π² основному ΠΏΡ€ΠΈ ΠΊΡ–ΠΌΠ½Π°Ρ‚Π½Ρ–ΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ– Ρ– м’яких ΡƒΠΌΠΎΠ²Π°Ρ…, Ρ‰ΠΎ дозволяє ΡƒΠ½ΠΈΠΊΠ½ΡƒΡ‚ΠΈ утворСння Π½Π΅Π±Π°ΠΆΠ°Π½ΠΈΡ… ΠΏΠΎ-Π±Ρ–Ρ‡Π½ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π². Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΎΠ²Π°Π½Ρ– Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ Ρ” Ρ†Ρ–ΠΊΠ°Π²ΠΈΠΌΠΈ Ρ‚Π° пСрспСктивними об’єктами Π· Ρ‚ΠΎΡ‡ΠΊΠΈ Π·ΠΎΡ€Ρƒ ΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΎΡ— Ρ…Ρ–ΠΌΡ–Ρ—, ΠΎΡΠΊΡ–Π»ΡŒΠΊΠΈ Π²Ρ–Π΄ΠΎΠΌΠΎ, Ρ‰ΠΎ сполуки Ρ–Π· сукцинімідним ядром ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ΡŒ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½Ρƒ, ΠΏΡ€ΠΎΡ‚ΠΈΡ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»ΡŒΠΎΠ·Π½Ρƒ Ρ‚Π° Π°Π½Ρ‚ΠΈΠ΅ΠΏΡ–Π»Π΅ΠΏΡ‚ΠΈΡ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ. Π’Ρ–Π΄ΠΎΠΌΡ– Ρ‚Π°ΠΊΠΎΠΆ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ– сполуки Π· ΠΏΡ–Ρ€ΠΎΠ»Ρ–Π΄ΠΈΠ½-2,5-Π΄Ρ–ΠΎΠ½ΠΎΠ²ΠΈΠΌ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ, Ρ‰ΠΎ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒΡΡ як Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ– Ρ‚Π° сСлСктивні Π°Π½Ρ‚ΠΈΠ±Ρ–ΠΎΡ‚ΠΈΠΊΠΈ. Π£ Π΄Π°Π½Ρ–ΠΉ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– Π±ΡƒΠ»ΠΎ дослідТСно Ρ€Π΅Π³Ρ–ΠΎΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ приєднання ΠΌΠ°Π»Π΅Ρ—Π½Ρ–ΠΌΡ–Π΄Ρ–Π² Π΄ΠΎ Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΈΡ… субстратів Π· Π΄Π²ΠΎΠΌΠ° Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½ΠΈΠΌΠΈ Π΄ΠΎΠ½ΠΎΡ€Π½ΠΈΠΌΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ. Π’ якості ΠΊΠ°Ρ‚Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€Ρ–Π² Π±ΡƒΠ»ΠΈ використані Ρ…Π»ΠΎΡ€ΠΈΠ΄ΠΈ Π°Π»ΡŽΠΌΡ–Π½Ρ–ΡŽ Ρ‚Π° Ρ†ΠΈΠ½ΠΊΡƒ, Π° Ρ‚Π°ΠΊΠΎΠΆ Π»Ρ–Ρ‚Ρ–ΡŽ ΠΏΠ΅Ρ€Ρ…Π»ΠΎΡ€Π°Ρ‚. Π‘ΡƒΠ»ΠΎ виявлСно, Ρ‰ΠΎ Π²ΠΈΠΏΡ€ΠΎΠ±ΡƒΠ²Π°Π½Ρ– кислоти Π›ΡŒΡŽΡ—ΡΠ° ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ΡŒ Ρ€Ρ–Π·Π½Ρƒ ΠΊΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π½Π° Ρ€Ρ–Π·Π½ΠΈΡ… субстратах, Ρ‰ΠΎ Π²ΠΎΡ‡Π΅Π²ΠΈΠ΄ΡŒ Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ Π½ΡƒΠΊΠ»Π΅ΠΎΡ„Ρ–Π»ΡŒΠ½ΠΎΡΡ‚Ρ– Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρƒ. ΠΠ°ΠΉΠ±Ρ–Π»ΡŒΡˆ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌ ΠΊΠ°Ρ‚Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€ΠΎΠΌ для Б–Б приєднання виявився Π°Π»ΡŽΠΌΡ–Π½Ρ–ΡŽ Ρ…Π»ΠΎΡ€ΠΈΠ΄. Π£ свою Ρ‡Π΅Ρ€Π³Ρƒ, Π»Ρ–Ρ‚Ρ–ΡŽ ΠΏΠ΅Ρ€Ρ…Π»ΠΎΡ€Π°Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Π² високу ΠΊΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ для Б–N приєднання, Π° Ρ†ΠΈΠ½ΠΊΡƒ Ρ…Π»ΠΎΡ€ΠΈΠ΄ Π±ΡƒΠ² Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΠΉ, як Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ Ρƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ приєднання ΠΌΠ°Π»Π΅Ρ—Π½Ρ–ΠΌΡ–Π΄Π½ΠΎΠ³ΠΎ ΠΊΡ–Π»ΡŒΡ†Ρ Π΄ΠΎ Π΅ΠΊΠ·ΠΎΡ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΡ— Π°ΠΌΡ–Π½ΠΎΠ³Ρ€ΡƒΠΏΠΈ 2-Π°ΠΌΡ–Π½ΠΎΡ‚Ρ–Π°Π·ΠΎΠ»Ρƒ. ΠŸΠ΅Ρ€Π΅Π²Π°Π³Π°ΠΌΠΈ Π΄Π°Π½ΠΎΠ³ΠΎ ΠΊΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Ρ” м’які Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉΠ½Ρ– ΡƒΠΌΠΎΠ²ΠΈ, низька Ρ‚ΠΎΠΊΡΠΈΡ‡Π½Ρ–ΡΡ‚ΡŒ ΠΊΠ°Ρ‚Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€Ρ–Π² Ρ‚Π° Ρ—Ρ… низька Ρ†Ρ–Π½Π°, Ρ‰ΠΎ Ρ€ΠΎΠ±ΠΈΡ‚ΡŒ Π΄Π°Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ синтСтично Π²ΠΈΠ³Ρ–Π΄Π½ΠΈΠΌ для отримання 3-Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… ΠΏΡ–Ρ€ΠΎΠ»Ρ–Π΄ΠΈΠ½-2,5-Π΄Ρ–ΠΎΠ½Ρ–Π²

    Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors

    Get PDF
    We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property-free knowledge base for future anticoronavirus drug discovery

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    Get PDF
    Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID

    Synthesis of 3-heteryl substituted pyrrolidine-2,5-diones via catalytic Michael reaction and evaluation of their inhibitory activity against InhA and Mycobacterium tuberculosis

    No full text
    In the present paper, we report the synthesis via catalytic Michael reaction and biological results of a series of 3-heteryl substituted pyrrolidine-2,5-dione derivatives as moderate inhibitors against M. tuberculosis H37Rv growth. Some of them present also inhibition activities against InhA

    Design, chemical synthesis of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives and biological activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis.

    No full text
    We report here the discovery, synthesis and screening results of a series of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives as a novel class of potent inhibitors of Mycobacterium tuberculosis H37Rv strain as well as the enoyl acyl carrier protein reductase (ENR) InhA. Among them, several compounds displayed good activities against InhA which is one of the key enzymes involved in the type II fatty acid biosynthesis pathway of the mycobacteria cell wall. Furthermore, some exhibited promising activities against M. tuberculosis and multi-drug resistant M. tuberculosis strains

    Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors

    No full text
    We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property–free knowledge base for future anticoronavirus drug discovery

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    No full text
    This work was supported by grants of the German Research Foundation (DFG: KR 4073/11-1; SFBTRR219, 322900939; and CRU344, 428857858, and CRU5011 InteraKD 445703531), a grant of the European Research Council (ERC-StG 677448), the Federal Ministry of Research and Education (BMBF NUM-COVID19, Organo-Strat 01KX2021), the Dutch Kidney Foundation (DKF) TASK FORCE consortium (CP1805), the Else Kroener Fresenius Foundation (2017_A144), and the ERA-CVD MENDAGE consortium (BMBF 01KL1907) all to R.K.; DFG (CRU 344, Z to I.G.C and CRU344 P2 to R.K.S.); and the BMBF eMed Consortium Fibromap (to V.G.P, R.K., R.K.S., and I.G.C.). R.K.S received support from the KWF Kankerbestrijding (11031/2017–1, Bas Mulder Award) and a grant by the ERC (deFiber; ERC-StG 757339). J.J. is supported by the Netherlands Organisation for Scientific Research (NWO Veni grant no: 091 501 61 81 01 36) and the DKF (grant no. 19OK005). B.S. is supported by the DKF (grant: 14A3D104) and the NWO (VIDI grant: 016.156.363). R.P.V.R. and G.J.O. are supported by the NWO VICI (grant: 16.VICI.170.090). P.B. is supported by the BMBF (DEFEAT PANDEMIcs, 01KX2021), the Federal Ministry of Health (German Registry for COVID-19 Autopsies-DeRegCOVID, www.DeRegCOVID.ukaachen.de; ZMVI1-2520COR201), and the German Research Foundation (DFG; SFB/TRR219 Project-IDs 322900939 and 454024652). S.D. received DFG support (DJ100/1-1) as well as support from VGP and TBH (SFB1192). M.d.B,R.R., N.S., and A.A. are supported by an ERC Advanced Investigator grant (H2020-ERC-2017-ADV-788982-COLMIN) to N.S. A.A. is supported by the NWO (VI.Veni.192.094). We thank Saskia de Wildt, Jeanne Pertijs (Radboudumc, Department of Pharmacology), and Robert M. Verdijk (Erasmus Medical Center, Department of Pathology) for providing tissue controls (Erasmus MC Tissue Bank) and Christian Drosten (ChariteΒ΄ Universitatsmedizin Berlin, Institute of € Virology) and Bart Haagmans (Erasmus Medical Center, Rotterdam) for providing the SARS-CoV-2 isolate. We thank Kioa L. Wijnsma (Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Radboud University Medical Center) for support with statistical analysis regarding the COVID-19 patient cohort.Peer reviewedPublisher PD
    corecore