7 research outputs found
ΠΠ°ΡΠ°Π»ΡΡΠΈΡΠ½Π΅ ΠΊΠ°ΡΠ±ΠΎΠ½-ΠΊΠ°ΡΠ±ΠΎΠ½ ΡΠ° ΠΊΠ°ΡΠ±ΠΎΠ½-Π³Π΅ΡΠ΅ΡΠΎΠ°ΡΠΎΠΌ ΡΠΏΡΡΠΆΠ΅Π½Π΅ ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ n-Π·Π°ΠΌΡΡΠ΅- Π½ΠΈΡ ΠΌΠ°Π»Π΅ΡΠ½ΡΠΌΡΠ΄ΡΠ² Π΄ΠΎ 4Π½-1,2,4-ΡΡΠΈΠ°Π·ΠΎΠ»-3-ΡΡΠΎΠ»ΡΠ², 2-Π°ΠΌΡΠ½ΠΎ-1,3-ΡΡΠ°Π·ΠΎΠ»ΡΠ², 1Π½-ΡΠΌΡΠ΄Π°Π·ΠΎΠ»Ρ ΡΠ° 2-ΡΠ΅- Π½ΡΠ»ΡΠ½Π΄ΠΎΠ»ΡΠ·ΠΈΠ½Ρ Π² ΠΏΡΠΈΡΡΡΠ½ΠΎΡΡΡ ΠΊΠΈΡΠ»ΠΎΡ Π»ΡΡΡΡΠ°
In the paper the cheap and effective method of the synthesis of 3-heteryl substituted succinimides via catalytic Michael addition are presented. Lewis acids have been found to be effective catalysts for conjugate addition of N-aryl substituted maleimides to the heterocycles with donor-heteroatoms or CH-active function. Catalytic reactions proceed in mild conditions without formation of by-products that are often present in the classical Michael reaction. The compounds synthesized are promising and interesting substrates for biological evaluation since numerous natural products, drugs and drug candidates bear the succinimide core. Moreover, regioselectivity of addition of ambident heterocyclic nucleophiles such as 4H-1,2,4-triazole-3-thiole, 1H-imidazole and 2-amino- 1,3-thiazole to maleimides have been investigated. Lewis acids such as aluminium chloride, zinc chloride and lithium perchlorate have been tested on different heterocyclic substrates as catalysts. Interestingly, depending on nucleophilicity of the substrate different Lewis acids have shown significantly varying efficacy. In this respect aluminium chloride was identified as the most effective catalyst for CβC addition among the Lewis acids tested. Lithium perchlorate appears to be the most efficient in the case of CβN addition with the endocyclic nitrogen atom of the hererocycle. Zinc chloride shows a good catalytic efficacy in addition of maleimides to the exocyclic amino group of 2-aminothiazole. Finally, the advantages of the catalytic approach developed such as mild reaction conditions, easy handling, low toxicity of the catalysts and their low cost make this method useful for the synthesis of new 3-heteryl substituted succinimides, which, in turn, are interesting substrates in medicinal chemistry.Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΏΡΠΎΡΡΠΎΠΉ ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠ½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΡΠΈΠ½ΡΠ΅Π·Π° 3-Π³Π΅ΡΠ°ΡΠΈΠ»Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΠΏΠΈΡΡΠΎΠ»ΠΈΠ΄ΠΈΠ½-2,5-Π΄ΠΈΠΎΠ½ΠΎΠ² Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΠΈΡ
Π°ΡΠ»Ρ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΡΡΠΈΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΡΡΠΎΠΊΡΡ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΡΠ΅Π°ΠΊΡΠΈΡΡ
ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ N-Π°ΡΠΈΠ»Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΠΌΠ°Π»Π΅ΠΈΠ½ΠΈΠΌΠΈΠ΄ΠΎΠ² ΠΊ Π΄ΠΎΠ½ΠΎΡΠ½ΡΠΌ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»Π°ΠΌ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡ Π² Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ ΡΠ»ΡΡΠ°Π΅Π² ΠΏΡΠΈ ΠΊΠΎΠΌΠ½Π°ΡΠ½ΠΎΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ ΠΈ ΠΌΡΠ³ΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΠ·Π±Π΅Π³Π°ΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΡ
ΠΏΠΎΠ±ΠΎΡΠ½ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ². Π‘ΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ Ρ
ΠΈΠΌΠΈΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Ρ
ΠΎΡΠΎΡΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΠΏΠΈΡΠΎΠ»ΠΈΠ΄ΠΈΠ½-2,5-Π΄ΠΈΠΎΠ½ΠΎΠ² ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ, Π°Π½ΡΠΈΡΠΏΠΈΠ»Π΅ΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΡΠ±Π΅ΡΠΊΡΠ»Π΅Π·Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ. Π’Π°ΠΊΠΆΠ΅ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΡ ΠΏΡΠΈΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΡΡΠΊΡΠΈΠ½ΠΈΠΌΠΈΠ΄Π½ΠΎΠ΅ ΡΠ΄ΡΠΎ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²Π»ΡΡΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΠΈ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠ°ΠΌΠΈ. Π ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ Π±ΡΠ»Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° ΡΠ΅Π³ΠΈΠΎΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΌΠ°Π»Π΅ΠΈΠ½ΠΈΠΌΠΈΠ΄ΠΎΠ² ΠΊ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΡΠ±ΡΡΡΠ°ΡΠ°ΠΌ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Ρ
Π»ΠΎΡΠΈΠ΄Ρ Π°Π»ΡΠΌΠΈΠ½ΠΈΡ, ΡΠΈΠ½ΠΊΠ° ΠΈ ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°Ρ Π»ΠΈΡΠΈΡ. ΠΠΊΠ°Π·Π°Π»ΠΎΡΡ, ΡΡΠΎ Π°ΠΏΡΠΎΠ±ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΡΡΠΈΡΠ° ΠΈΠΌΠ΅ΡΡ ΡΠ°Π·Π½ΡΡ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π½Π° ΡΠ°Π·Π½ΡΡ
ΡΡΠ±ΡΡΡΠ°ΡΠ°Ρ
, ΡΡΠΎ, Π²Π΅ΡΠΎΡΡΠ½ΠΎ, Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ»ΡΠ½ΠΎΡΡΠΈ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»Π°. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠΌ Π΄Π»Ρ Π‘βΠ‘ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΎΠΊΠ°Π·Π°Π»ΡΡ Ρ
Π»ΠΎΡΠΈΠ΄ Π°Π»ΡΠΌΠΈΠ½ΠΈΡ, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°Ρ Π»ΠΈΡΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π» Π²ΡΡΠΎΠΊΡΡ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈ Π‘βN ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ, Π° Ρ
Π»ΠΎΡΠΈΠ΄ ΡΠΈΠ½ΠΊΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΠΎΠ»ΡΡΠΈΡΡ Π²ΡΡΠΎΠΊΠΈΠ΅ Π²ΡΡ
ΠΎΠ΄Ρ Π°Π΄Π΄ΡΠΊΡΠΎΠ² Π² ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΌΠ°Π»Π΅ΠΈΠ½ΠΈΠΌΠΈΠ΄ΠΎΠ² ΠΊ ΡΠΊΠ·ΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΌΠΈΠ½ΠΎΠ³ΡΡΠΏΠΏΠ΅ 2-Π°ΠΌΠΈΠ½ΠΎΡΠΈΠ°Π·ΠΎΠ»Π°. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Π·Π΄Π΅ΡΡ ΠΎΠΏΡΠΈΠΌΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°ΡΡ Π½ΠΎΠ²ΡΠ΅ 3-Π³Π΅ΡΠ°ΡΠΈΠ»Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΠΏΠΈΡΡΠΎΠ»ΠΈΠ΄ΠΈΠ½-2,5-Π΄ΠΈΠΎΠ½Ρ.Π Π΄Π°Π½ΡΠΉ ΠΏΡΠ±Π»ΡΠΊΠ°ΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΏΡΠΎΡΡΠΈΠΉ ΡΠ° Π΅ΠΊΠΎΠ½ΠΎΠΌΠ½ΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΡΠΈΠ½ΡΠ΅Π·Ρ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
3-Π³Π΅ΡΠ΅ΡΠΈΠ»Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΠΏΡΡΠΎΠ»ΡΠ΄ΠΈΠ½-2,5-Π΄ΡΠΎΠ½ΡΠ² Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΠΊΠ°ΡΠ°Π»ΡΡΠΈΡΠ½ΠΎΡ ΡΠ΅Π°ΠΊΡΡΡ ΠΡΡ
Π°Π΅Π»Ρ. Π ΡΠΊΠΎΡΡΡ ΠΊΠ°ΡΠ°Π»ΡΠ·Π°ΡΠΎΡΡΠ² Π±ΡΠ»ΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Ρ ΠΊΠΈΡΠ»ΠΎΡΠΈ ΠΡΡΡΡΠ°, ΡΠΊΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΠΈΡΠΎΠΊΡ ΠΊΠ°ΡΠ°Π»ΡΡΠΈΡΠ½Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ Ρ ΡΠ΅Π°ΠΊΡΡΡΡ
ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ N-Π°ΡΠΈΠ»Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΠΌΠ°Π»Π΅ΡΠ½ΡΠΌΡΠ΄ΡΠ² Π΄ΠΎ Π΄ΠΎΠ½ΠΎΡΠ½ΠΈΡ
ΡΠ° Π‘Π-Π°ΠΊΡΠΈΠ²Π½ΠΈΡ
Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΠ². ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π°ΠΊΡΡΡ ΠΏΠ΅ΡΠ΅Π±ΡΠ³Π°ΡΡΡ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌΡ ΠΏΡΠΈ ΠΊΡΠΌΠ½Π°ΡΠ½ΡΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Ρ ΠΌβΡΠΊΠΈΡ
ΡΠΌΠΎΠ²Π°Ρ
, ΡΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡ ΡΠ½ΠΈΠΊΠ½ΡΡΠΈ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π½Π΅Π±Π°ΠΆΠ°Π½ΠΈΡ
ΠΏΠΎ-Π±ΡΡΠ½ΠΈΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΡΠ². Π‘ΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½Ρ ΡΠ΅ΡΠΎΠ²ΠΈΠ½ΠΈ Ρ ΡΡΠΊΠ°Π²ΠΈΠΌΠΈ ΡΠ° ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ ΠΎΠ±βΡΠΊΡΠ°ΠΌΠΈ Π· ΡΠΎΡΠΊΠΈ Π·ΠΎΡΡ ΠΌΠ΅Π΄ΠΈΡΠ½ΠΎΡ Ρ
ΡΠΌΡΡ, ΠΎΡΠΊΡΠ»ΡΠΊΠΈ Π²ΡΠ΄ΠΎΠΌΠΎ, ΡΠΎ ΡΠΏΠΎΠ»ΡΠΊΠΈ ΡΠ· ΡΡΠΊΡΠΈΠ½ΡΠΌΡΠ΄Π½ΠΈΠΌ ΡΠ΄ΡΠΎΠΌ ΠΏΡΠΎΡΠ²Π»ΡΡΡΡ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΡΠ°Π»ΡΠ½Ρ, ΠΏΡΠΎΡΠΈΡΡΠ±Π΅ΡΠΊΡΠ»ΡΠΎΠ·Π½Ρ ΡΠ° Π°Π½ΡΠΈΠ΅ΠΏΡΠ»Π΅ΠΏΡΠΈΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ. ΠΡΠ΄ΠΎΠΌΡ ΡΠ°ΠΊΠΎΠΆ ΠΏΡΠΈΡΠΎΠ΄Π½Ρ ΡΠΏΠΎΠ»ΡΠΊΠΈ Π· ΠΏΡΡΠΎΠ»ΡΠ΄ΠΈΠ½-2,5-Π΄ΡΠΎΠ½ΠΎΠ²ΠΈΠΌ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠΌ, ΡΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΡΡΡ ΡΠΊ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½Ρ ΡΠ° ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½Ρ Π°Π½ΡΠΈΠ±ΡΠΎΡΠΈΠΊΠΈ. Π£ Π΄Π°Π½ΡΠΉ ΡΠΎΠ±ΠΎΡΡ Π±ΡΠ»ΠΎ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ ΡΠ΅Π³ΡΠΎΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ ΠΌΠ°Π»Π΅ΡΠ½ΡΠΌΡΠ΄ΡΠ² Π΄ΠΎ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΈΡ
ΡΡΠ±ΡΡΡΠ°ΡΡΠ² Π· Π΄Π²ΠΎΠΌΠ° Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΠΈΠΌΠΈ Π΄ΠΎΠ½ΠΎΡΠ½ΠΈΠΌΠΈ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ. Π ΡΠΊΠΎΡΡΡ ΠΊΠ°ΡΠ°Π»ΡΠ·Π°ΡΠΎΡΡΠ² Π±ΡΠ»ΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Ρ Ρ
Π»ΠΎΡΠΈΠ΄ΠΈ Π°Π»ΡΠΌΡΠ½ΡΡ ΡΠ° ΡΠΈΠ½ΠΊΡ, Π° ΡΠ°ΠΊΠΎΠΆ Π»ΡΡΡΡ ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°Ρ. ΠΡΠ»ΠΎ Π²ΠΈΡΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π²ΠΈΠΏΡΠΎΠ±ΡΠ²Π°Π½Ρ ΠΊΠΈΡΠ»ΠΎΡΠΈ ΠΡΡΡΡΠ° ΠΏΡΠΎΡΠ²Π»ΡΡΡΡ ΡΡΠ·Π½Ρ ΠΊΠ°ΡΠ°Π»ΡΡΠΈΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π½Π° ΡΡΠ·Π½ΠΈΡ
ΡΡΠ±ΡΡΡΠ°ΡΠ°Ρ
, ΡΠΎ Π²ΠΎΡΠ΅Π²ΠΈΠ΄Ρ Π·Π°Π»Π΅ΠΆΠΈΡΡ Π²ΡΠ΄ Π½ΡΠΊΠ»Π΅ΠΎΡΡΠ»ΡΠ½ΠΎΡΡΡ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»Ρ. ΠΠ°ΠΉΠ±ΡΠ»ΡΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΌ ΠΊΠ°ΡΠ°Π»ΡΠ·Π°ΡΠΎΡΠΎΠΌ Π΄Π»Ρ Π‘βΠ‘ ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ Π²ΠΈΡΠ²ΠΈΠ²ΡΡ Π°Π»ΡΠΌΡΠ½ΡΡ Ρ
Π»ΠΎΡΠΈΠ΄. Π£ ΡΠ²ΠΎΡ ΡΠ΅ΡΠ³Ρ, Π»ΡΡΡΡ ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°Ρ ΠΏΠΎΠΊΠ°Π·Π°Π² Π²ΠΈΡΠΎΠΊΡ ΠΊΠ°ΡΠ°Π»ΡΡΠΈΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π΄Π»Ρ Π‘βN ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ, Π° ΡΠΈΠ½ΠΊΡ Ρ
Π»ΠΎΡΠΈΠ΄ Π±ΡΠ² ΡΠ΄Π΅Π½ΡΠΈΡΡΠΊΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΊ Π½Π°ΠΉΠ±ΡΠ»ΡΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΉ Ρ Π²ΠΈΠΏΠ°Π΄ΠΊΡ ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ ΠΌΠ°Π»Π΅ΡΠ½ΡΠΌΡΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡΠ»ΡΡΡ Π΄ΠΎ Π΅ΠΊΠ·ΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΎΡ Π°ΠΌΡΠ½ΠΎΠ³ΡΡΠΏΠΈ 2-Π°ΠΌΡΠ½ΠΎΡΡΠ°Π·ΠΎΠ»Ρ. ΠΠ΅ΡΠ΅Π²Π°Π³Π°ΠΌΠΈ Π΄Π°Π½ΠΎΠ³ΠΎ ΠΊΠ°ΡΠ°Π»ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ Ρ ΠΌβΡΠΊΡ ΡΠ΅Π°ΠΊΡΡΠΉΠ½Ρ ΡΠΌΠΎΠ²ΠΈ, Π½ΠΈΠ·ΡΠΊΠ° ΡΠΎΠΊΡΠΈΡΠ½ΡΡΡΡ ΠΊΠ°ΡΠ°Π»ΡΠ·Π°ΡΠΎΡΡΠ² ΡΠ° ΡΡ
Π½ΠΈΠ·ΡΠΊΠ° ΡΡΠ½Π°, ΡΠΎ ΡΠΎΠ±ΠΈΡΡ Π΄Π°Π½ΠΈΠΉ ΠΏΡΠ΄Ρ
ΡΠ΄ ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ½ΠΎ Π²ΠΈΠ³ΡΠ΄Π½ΠΈΠΌ Π΄Π»Ρ ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ 3-Π³Π΅ΡΠ΅ΡΠΈΠ»Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΠΏΡΡΠΎΠ»ΡΠ΄ΠΈΠ½-2,5-Π΄ΡΠΎΠ½ΡΠ²
Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors
We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property-free knowledge base for future anticoronavirus drug discovery
SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids
Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID
Synthesis of 3-heteryl substituted pyrrolidine-2,5-diones via catalytic Michael reaction and evaluation of their inhibitory activity against InhA and Mycobacterium tuberculosis
In the present paper, we report the synthesis via catalytic Michael reaction and biological
results of a series of 3-heteryl substituted pyrrolidine-2,5-dione derivatives as moderate inhibitors
against M. tuberculosis H37Rv growth. Some of them present also inhibition activities against InhA
Design, chemical synthesis of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives and biological activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis.
We report here the discovery, synthesis and screening results of a series of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives as a novel class of potent inhibitors of Mycobacterium tuberculosis H37Rv strain as well as the enoyl acyl carrier protein reductase (ENR) InhA. Among them, several compounds displayed good activities against InhA which is one of the key enzymes involved in the type II fatty acid biosynthesis pathway of the mycobacteria cell wall. Furthermore, some exhibited promising activities against M. tuberculosis and multi-drug resistant M. tuberculosis strains
Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors
We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual propertyβfree knowledge base for future anticoronavirus drug discovery
SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids
This work was supported by grants of the German Research Foundation (DFG: KR 4073/11-1; SFBTRR219, 322900939; and CRU344, 428857858, and CRU5011 InteraKD 445703531), a grant of the European Research Council (ERC-StG 677448), the Federal Ministry of Research and Education (BMBF NUM-COVID19, Organo-Strat 01KX2021), the Dutch Kidney Foundation (DKF) TASK FORCE consortium (CP1805), the Else Kroener Fresenius Foundation (2017_A144), and the ERA-CVD MENDAGE consortium (BMBF 01KL1907) all to R.K.; DFG (CRU 344, Z to I.G.C and CRU344 P2 to R.K.S.); and the BMBF eMed Consortium Fibromap (to V.G.P, R.K., R.K.S., and I.G.C.). R.K.S received support from the KWF Kankerbestrijding (11031/2017β1, Bas Mulder Award) and a grant by the ERC (deFiber; ERC-StG 757339). J.J. is supported by the Netherlands Organisation for Scientific Research (NWO Veni grant no: 091 501 61 81 01 36) and the DKF (grant no. 19OK005). B.S. is supported by the DKF (grant: 14A3D104) and the NWO (VIDI grant: 016.156.363). R.P.V.R. and G.J.O. are supported by the NWO VICI (grant: 16.VICI.170.090). P.B. is supported by the BMBF (DEFEAT PANDEMIcs, 01KX2021), the Federal Ministry of Health (German Registry for COVID-19 Autopsies-DeRegCOVID, www.DeRegCOVID.ukaachen.de; ZMVI1-2520COR201), and the German Research Foundation (DFG; SFB/TRR219 Project-IDs 322900939 and 454024652). S.D. received DFG support (DJ100/1-1) as well as support from VGP and TBH (SFB1192). M.d.B,R.R., N.S., and A.A. are supported by an ERC Advanced Investigator grant (H2020-ERC-2017-ADV-788982-COLMIN) to N.S. A.A. is supported by the NWO (VI.Veni.192.094). We thank Saskia de Wildt, Jeanne Pertijs (Radboudumc, Department of Pharmacology), and Robert M. Verdijk (Erasmus Medical Center, Department of Pathology) for providing tissue controls (Erasmus MC Tissue Bank) and Christian Drosten (ChariteΒ΄ Universitatsmedizin Berlin, Institute of β¬ Virology) and Bart Haagmans (Erasmus Medical Center, Rotterdam) for providing the SARS-CoV-2 isolate. We thank Kioa L. Wijnsma (Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Childrenβs Hospital, Radboud University Medical Center) for support with statistical analysis regarding the COVID-19 patient cohort.Peer reviewedPublisher PD