190 research outputs found

    Young children do not integrate visual and haptic information

    Get PDF
    Several studies have shown that adults integrate visual and haptic information (and information from other modalities) in a statistically optimal fashion, weighting each sense according to its reliability. To date no studies have investigated when this capacity for cross-modal integration develops. Here we show that prior to eight years of age, integration of visual and haptic spatial information is far from optimal, with either vision or touch dominating totally, even in conditions where the dominant sense is far less precise than the other (assessed by discrimination thresholds). For size discrimination, haptic information dominates in determining both perceived size and discrimination thresholds, while for orientation discrimination vision dominates. By eight-ten years, the integration becomes statistically optimal, like adults. We suggest that during development, perceptual systems require constant recalibration, for which cross-sensory comparison is important. Using one sense to calibrate the other precludes useful combination of the two sources

    On the origin of Phase Transitions in the absence of Symmetry-Breaking

    Get PDF
    In this paper we investigate the Hamiltonian dynamics of a lattice gauge model in three spatial dimension. Our model Hamiltonian is defined on the basis of a continuum version of a duality transformation of a three dimensional Ising model. The system so obtained undergoes a thermodynamic phase transition in the absence of symmetry-breaking. Besides the well known use of quantities like the Wilson loop we show how else the phase transition in such a kind of models can be detected. It is found that the first order phase transition undergone by this model is characterised according to an Ehrenfest-like classification of phase transitions applied to the configurational entropy. On the basis of the topological theory of phase transitions, it is discussed why the seemingly divergent behaviour of the third derivative of configurational entropy can be considered as the "shadow" of some suitable topological transition of certain submanifolds of configuration space.Comment: 31 pages, 9 figure

    Geometrical aspects in the analysis of microcanonical phase-transitions

    Get PDF
    In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy level sets of the Hamiltonian of a system under investigation. In particular, it turns out that peculiar behaviours of thermodynamic observables at a phase transition point are rooted in more fundamental changes of the geometry of the energy level sets in phase space. More specifically, we discuss how microcanonical and geometrical descriptions of phase-transitions are shaped in the special case of Ď•4\phi^4 models with either nearest-neighbours and mean-field interactions

    Cross-modal facilitation of visual and tactile motion

    Get PDF
    Robust and versatile perception of the world is augmented considerably when information from our five separate sensory systems is combined. Much recent evidence has demonstrated near-optimal integration across senses, but it remains unclear at what level the integration occurs, at a "sensory" or "decisional" level. Here we show that non-informative "pedestal" motion stimuli in one sensory modality (vision or touch) selectively lowers thresholds in the other, to the same degree as pedestals in the same modality: strong evidence for functionally important cross-sensory integration at early levels of sensory processing

    Cross-Sensory Facilitation Reveals Neural Interactions between Visual and Tactile Motion in Humans

    Get PDF
    Many recent studies show that the human brain integrates information across the different senses and that stimuli of one sensory modality can enhance the perception of other modalities. Here we study the processes that mediate cross-modal facilitation and summation between visual and tactile motion. We find that while summation produced a generic, non-specific improvement of thresholds, probably reflecting higher-order interaction of decision signals, facilitation reveals a strong, direction-specific interaction, which we believe reflects sensory interactions. We measured visual and tactile velocity discrimination thresholds over a wide range of base velocities and conditions. Thresholds for both visual and tactile stimuli showed the characteristic “dipper function,” with the minimum thresholds occurring at a given “pedestal speed.” When visual and tactile coherent stimuli were combined (summation condition) the thresholds for these multisensory stimuli also showed a “dipper function” with the minimum thresholds occurring in a similar range to that for unisensory signals. However, the improvement of multisensory thresholds was weak and not directionally specific, well predicted by the maximum-likelihood estimation model (agreeing with previous research). A different technique (facilitation) did, however, reveal direction-specific enhancement. Adding a non-informative “pedestal” motion stimulus in one sensory modality (vision or touch) selectively lowered thresholds in the other, by the same amount as pedestals in the same modality. Facilitation did not occur for neutral stimuli like sounds (that would also have reduced temporal uncertainty), nor for motion in opposite direction, even in blocked trials where the subjects knew that the motion was in the opposite direction showing that the facilitation was not under subject control. Cross-sensory facilitation is strong evidence for functionally relevant cross-sensory integration at early levels of sensory processing

    Audio Cortical Processing in Blind Individuals

    Get PDF
    This chapter focuses on the cortical processing of auditory spatial information in blindness. Research has demonstrated enhanced auditory processing in blind individuals, suggesting they compensate for lacking vision with greater sensitivity in other senses. A few years ago, we demonstrated severely impaired auditory precision in congenitally blind individuals when performing an auditory spatial metric task: participants’ thresholds for spatially bisecting three consecutive, spatially distributed sound sources were seriously compromised. Here we describe psychophysical and neural correlates of this deficit, and we show that the deficit disappears if blind individuals are presented with coherent spatio-temporal cues (short space associated with short time and vice versa). Instead, when the audio information presents incoherent spatio-temporal cues (short space associated with long time and vice versa), sighted individuals are unaffected by the perturbation while blind individuals are strongly attracted to the temporal cue. These results suggest that blind participants use temporal cues to make audio spatial estimations and that the visual cortex seems to have a functional role in these perceptual tasks. In the present chapter, we illustrate our hypothesis, suggesting that the lack of vision may drive construction of multisensory cortical network coding space based on temporal instead of spatial coordinates

    Non-ideal effects on the typical trailing edge shock pattern of ORC turbine blades

    Get PDF
    Abstract At the trailing edge of supersonic high-pressure turbine vanes, a typical shock pattern, the so-called fish-tail shocks, originates due to the flow rotation imposed by its finite thickness. In addition, shock and shock/fan systems can arise in case of a post-expanded channel design or at off-design conditions. ORC turbine stator blades are particularly prone to this phenomena since they are designed to provide a high outlet Mach number, especially at the first stage. In the close proximity of the saturation curve, near the critical point, molecularly complex organic fluids for ORC applications may exhibit a number of non-ideal gasdynamic effects, including a remarkable dependency of the shock properties on the upstream thermodynamic state of the fluid, at a fixed upstream Mach number. The influence of thermodynamic conditions on the shock pattern is assessed as a function of the flow deviation and compared against the ideal gas case, for which the shock properties depends on the upstream Mach number only. Non-ideal effects are investigated here using siloxane vapor MDM (Octamethyltrisiloxane, C 8 H 24 O 2 Si 3 ), as an exemplary organic fluid. The present results can be arguably extended to most vapors currently employed in ORC applications

    Impaired Visual Size-Discrimination in Children with Movement Disorders.

    Get PDF
    Abstract Multisensory integration of spatial information occurs late in childhood, at around eight years ( Gori, Del Viva, Sandini, & Burr, 2008 ). For younger children, the haptic system dominates size discrimination and vision dominates orientation discrimination: the dominance may reflect sensory calibration, and could have direct consequences on children born with specific sensory disabilities. Here we measure thresholds for visual discrimination of orientation and size in children with movement disorders of upper limbs. Visual orientation discrimination was very similar to the age-matched typical children, but visual size discrimination thresholds were far worse, in all eight individuals with early-onset movement disorder. This surprising and counterintuitive result is readily explained by the cross-sensory calibration hypothesis: when the haptic sense is unavailable for manipulation, it cannot be readily used to estimate size, and hence to calibrate the visual experience of size: visual discrimination is subsequently impaired. This complements a previous study showing that non-sighted children have reduced acuity for haptic orientation, but not haptic size, discriminations ( Gori, Sandini, Martinoli, & Burr, 2010 ). Together these studies show that when either vision or haptic manipulation is impaired, the impairment also impacts on complementary sensory systems that are calibrated by that one

    Experimental assessment of the open-source SU2 CFD suite for ORC applications

    Get PDF
    Abstract The first-ever experimental assessment of a Computational Fluid Dynamics (CFD) software for Non-Ideal Compressible-Fluid Dynamics (NICFD) flows of interest for ORC applications is presented here. Numerical results using SU2, the open-source suite for multi-physics simulation and design recently extended to deal with complex thermodynamic models of organic fluids, are compared here to experimental results from the Test-Rig for Organic VApours (TROVA) of the Laboratory of Compressible-fluid dynamics for Renewable Energy Applications (CREA), Politecnico di Milano. Experimental results regard supersonic expanding flows of siloxane fluid MDM (Octamethyltrisiloxane, C 8 H 24 O 2 Si 3 ) in non-ideal conditions representative of ORC applications. Three different geometries are considered for the assessment of the CFD solver. The first is a converging-diverging nozzle, representative of ORC supersonic stators, in which the fluid is accelerated to supersonic speed from highly non-ideal conditions, with inlet compressibility factor Z = Pv/(RT), computed using reference Equations Of State (EOS) for MDM fluid, as low as Z ~ 0.81. The second geometry is a diamond-shaped airfoil at a neutral angle of attack. The airfoil is plunged into a supersonic flow at Mach 1.5 and Z ~ 0.9, in mildly non-ideal conditions. Oblique shock waves are observed at the airfoil leading edge and interact with the wind-tunnel walls and the rarefaction fan from the airfoil. This test case is useful to understand the physics of oblique shock-wall and shock-shock interactions in turbine cascades operating in off-design conditions. The third geometry is a supersonic backward facing step, in which the formation of an oblique shock is observed experimentally at the reattachment point past the step. The Mach number is around 1.1 and the compressibility factor Z ~ 0.89. This geometry is representative of the trailing edge of turbine blades and it is useful to study the formation of fish-tail shock waves. These NICFD flows are fairly well captured by the CFD solver, thus confirming the validity of both the thermodynamic models and of the CFD implementation, using both the Euler equations for inviscid flows with negligible thermal conductivity and the full Reynolds-averaged compressible Navier-Stokes equations, for non-ideal compressible turbulent flows. In the considered shocked flows, grid adaptation is found to be key to capture the relevant flow features using a reasonable amount of grid points

    Optimization of an ORC supersonic nozzle under epistemic uncertainties due to turbulence models

    Get PDF
    International audienceOrganic Rankine Cycle (ORC) turbines usually operate in thermodynamic regions characterized by high-pressure ratios and strong non-ideal gas effects in the flow expansion, complicating their aerodynamic design significantly. This study presents the shape optimization of a typical 2D ORC turbine cascade (Biere), under epistemic uncertainties due to turbulence models (RANS). A design vector of size eleven controls the blade geometry parametrized with B-splines. The EQUiPS module integrated into the SU2 CFD suite, incorporating perturbations to the eigenvalues and the eigenvectors of the modeled Reynolds stress tensor, is used to evaluate the interval estimates on the predictions of integrated Quantity of Interest (QoI), performing only five specific RANS simulations. For a given blade profile, the QoIs total loss pressure and mass flow rate, are assumed to be independent uniform random variables, defined by those estimates. A global surrogate-based method allowing to propose different designs at each optimization step is used to solve the constrained mono-objective optimization problem. To illustrate the suitability of the method, several statistics of the total pressure are considered for the minimization, under the constraint that the mean of the mass flow rate to be within a range
    • …
    corecore