1,487 research outputs found

    Evidence for the use of a Diamond Drill for Bead Making in Sri-Lanka

    Get PDF
    The use of a diamond splinter turned by a bow drill to drill the quartz beads in present day Cambay, India has been documented. A group of Cambay beads were made available for study. They were compared with a similar group of quartz beads excavated in Mantai, Sri-Lanka. These were dated stratigraphically c.700-1000 A.D. Silicone impressions were made of the drill holes from selected beads from both Cambay and Mantai. These were examined by means of scanning electron microscopy. The pattern of drilling was the same, suggesting that the technique of drilling with a diamond splinter and bow drill was an ancient one. This has not been previously reported

    Statistical Methods for Large Flight Lots and Ultra-high Reliability Applications

    Get PDF
    We present statistical techniques for evaluating random and systematic errors for use in flight performance predictions for large flight lots and ultra-high reliability applications

    A cluster-separable Born approximation for the 3D reduction of the three-fermion Bethe-Salpeter equation

    Get PDF
    We perform a 3D reduction of the two-fermion Bethe-Salpeter equation based on Sazdjian's explicitly covariant propagator, combined with a covariant substitute of the projector on the positive-energy free states. We use this combination in the two fermions in an external potential and in the three-fermion problems. The covariance of the two-fermion propagators insures the covariance of the two-body equations obtained by switching off the external potential, or by switching off all interactions between any pair of two fermions and the third one, even if the series giving the 3D potential is limited to the Born term or more generally truncated. The covariant substitute of the positive energy projector preserves the equations against continuum dissolution without breaking the covariance.Comment: 21 pages, 1 figure This article has been deeply modified after refereeing. The presentation has been improved and examples have been added. Three subsections have been added (transition matrix elements, two-body limits, covariant Salpeter's equation). submitted to Journal of Physics

    Blocking premature reverse transcription fails to rescue the HIV-1 nucleocapsid-mutant replication defect

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nucleocapsid (NC) protein of HIV-1 is critical for viral replication. Mutational analyses have demonstrated its involvement in viral assembly, genome packaging, budding, maturation, reverse transcription, and integration. We previously reported that two conservative NC mutations, His23Cys and His44Cys, cause premature reverse transcription such that mutant virions contain approximately 1,000-fold more DNA than wild-type virus, and are replication defective. In addition, both mutants show a specific defect in integration after infection.</p> <p>Results</p> <p>In the present study we investigated whether blocking premature reverse transcription would relieve the infectivity defects, which we successfully performed by transfecting proviral plasmids into cells cultured in the presence of high levels of reverse transcriptase inhibitors. After subsequent removal of the inhibitors, the resulting viruses showed no significant difference in single-round infective titer compared to viruses where premature reverse transcription did occur; there was no rescue of the infectivity defects in the NC mutants upon reverse transcriptase inhibitor treatment. Surprisingly, time-course endogenous reverse transcription assays demonstrated that the kinetics for both the NC mutants were essentially identical to wild-type when premature reverse transcription was blocked. In contrast, after infection of CD4+ HeLa cells, it was observed that while the prevention of premature reverse transcription in the NC mutants resulted in lower quantities of initial reverse transcripts, the kinetics of reverse transcription were not restored to that of untreated wild-type HIV-1.</p> <p>Conclusions</p> <p>Premature reverse transcription is not the cause of the replication defect but is an independent side-effect of the NC mutations.</p

    Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment

    Get PDF
    This is the published version. Copyright American Geophysical Union[1] Groundwater consumption by phreatophytes is a difficult-to-measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated-unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified

    Vif is a RNA chaperone that could temporally regulate RNA dimerization and the early steps of HIV-1 reverse transcription

    Get PDF
    HIV-1 Vif (viral infectivity factor) is associated with the assembly complexes and packaged at low level into the viral particles, and is essential for viral replication in non-permissive cells. Viral particles produced in the absence of Vif exhibit structural defects and are defective in the early steps of reverse transcription. Here, we show that Vif is able to anneal primer tRNALys3 to the viral RNA, to decrease pausing of reverse transcriptase during (–) strand strong-stop DNA synthesis, and to promote the first strand transfer. Vif also stimulates formation of loose HIV-1 genomic RNA dimers. These results indicate that Vif is a bona fide RNA chaperone. We next studied the effects of Vif in the presence of HIV-1 NCp, which is a well-established RNA chaperone. Vif inhibits NCp-mediated formation of tight RNA dimers and hybridization of tRNALys3, while it has little effects on NCp-mediated strand transfer and it collaborates with nucleocapsid (NC) to increase RT processivity. Thus, Vif might negatively regulate NC-assisted maturation of the RNA dimer and early steps of reverse transcription in the assembly complexes, but these inhibitory effects would be relieved after viral budding, thanks to the limited packaging of Vif in the virions
    • …
    corecore