4,969 research outputs found

    Reconstructing 3D x-ray CT images of polymer gel dosimeters using the zero-scan method

    Get PDF
    In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ‘zero-scan’ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner’s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels

    Spectral and total radiation properties of turbulent carbon monoxide/air diffusion flames

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76724/1/AIAA-1986-294-399.pd

    microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-ÎČ actions

    Get PDF
    Increased microRNA-10b (miR-10b) expression in the cancer cells in pancreatic ductal adenocarcinoma (PDAC) is a marker of disease aggressiveness. In the present study, we determined that plasma miR-10b levels are significantly increased in PDAC patients by comparison with normal controls. By gene profiling, we identified potential targets downregulated by miR-10b, including Tat-interacting protein 30 (TIP30). Immunoblotting and luciferase reporter assays confirmed that TIP30 was a direct miR-10b target. Downregulation of TIP30 by miR-10b or siRNA-mediated silencing of TIP30 enhanced epidermal growth factor (EGF)-dependent invasion. The actions of miR-10b were abrogated by expressing a modified TIP30 cDNA resistant to miR-10b. EGF-induced EGF receptor (EGFR) tyrosine phosphorylation and extracellular signal–regulated kinase phosphorylation were enhanced by miR-10b, and these effects were mimicked by TIP30 silencing. The actions of EGF in the presence of miR-10b were blocked by EGFR kinase inhibition with erlotinib and by dual inhibition of PI3K (phosphatidylinositol 3â€Č-kinase) and MEK. Moreover, miR-10b, EGF and transforming growth factor-beta (TGF-ÎČ) combined to markedly increase cell invasion, and this effect was blocked by the combination of erlotinib and SB505124, a type I TGF-ÎČ receptor inhibitor. miR-10b also enhanced the stimulatory effects of EGF and TGF-ÎČ on cell migration and epithelial–mesenchymal transition (EMT) and decreased the expression of RAP2A, EPHB2, KLF4 and NF1. Moreover, miR-10b overexpression accelerated pancreatic cancer cell (PCC) proliferation and tumor growth in an orthotopic model. Thus, plasma miR-10b levels may serve as a diagnostic marker in PDAC, whereas intra-tumoral miR-10b promotes PCC proliferation and invasion by suppressing TIP30, which enhances EGFR signaling, facilitates EGF–TGF-ÎČ cross-talk and enhances the expression of EMT-promoting genes, whereas decreasing the expression of several metastasis-suppressing genes. Therefore, therapeutic targeting of miR-10b in PDAC may interrupt growth-promoting deleterious EGF–TGF-ÎČ interactions and antagonize the metastatic process at various levels

    HypTrails: A Bayesian Approach for Comparing Hypotheses About Human Trails on the Web

    Full text link
    When users interact with the Web today, they leave sequential digital trails on a massive scale. Examples of such human trails include Web navigation, sequences of online restaurant reviews, or online music play lists. Understanding the factors that drive the production of these trails can be useful for e.g., improving underlying network structures, predicting user clicks or enhancing recommendations. In this work, we present a general approach called HypTrails for comparing a set of hypotheses about human trails on the Web, where hypotheses represent beliefs about transitions between states. Our approach utilizes Markov chain models with Bayesian inference. The main idea is to incorporate hypotheses as informative Dirichlet priors and to leverage the sensitivity of Bayes factors on the prior for comparing hypotheses with each other. For eliciting Dirichlet priors from hypotheses, we present an adaption of the so-called (trial) roulette method. We demonstrate the general mechanics and applicability of HypTrails by performing experiments with (i) synthetic trails for which we control the mechanisms that have produced them and (ii) empirical trails stemming from different domains including website navigation, business reviews and online music played. Our work expands the repertoire of methods available for studying human trails on the Web.Comment: Published in the proceedings of WWW'1

    Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum.

    Get PDF
    The ability to connect genetic information between traits over time allow Bayesian networks to offer a powerful probabilistic framework to construct genomic prediction models. In this study, we phenotyped a diversity panel of 869 biomass sorghum (Sorghum bicolor (L.) Moench) lines, which had been genotyped with 100,435 SNP markers, for plant height (PH) with biweekly measurements from 30 to 120 days after planting (DAP) and for end-of-season dry biomass yield (DBY) in four environments. We evaluated five genomic prediction models: Bayesian network (BN), Pleiotropic Bayesian network (PBN), Dynamic Bayesian network (DBN), multi-trait GBLUP (MTr-GBLUP), and multi-time GBLUP (MTi-GBLUP) models. In fivefold cross-validation, prediction accuracies ranged from 0.46 (PBN) to 0.49 (MTr-GBLUP) for DBY and from 0.47 (DBN, DAP120) to 0.75 (MTi-GBLUP, DAP60) for PH. Forward-chaining cross-validation further improved prediction accuracies of the DBN, MTi-GBLUP and MTr-GBLUP models for PH (training slice: 30-45 DAP) by 36.4-52.4% relative to the BN and PBN models. Coincidence indices (target: biomass, secondary: PH) and a coincidence index based on lines (PH time series) showed that the ranking of lines by PH changed minimally after 45 DAP. These results suggest a two-level indirect selection method for PH at harvest (first-level target trait) and DBY (second-level target trait) could be conducted earlier in the season based on ranking of lines by PH at 45 DAP (secondary trait). With the advance of high-throughput phenotyping technologies, our proposed two-level indirect selection framework could be valuable for enhancing genetic gain per unit of time when selecting on developmental traits

    Cortical dynamics of disfluency in adults who stutter

    Get PDF
    Citation: Sengupta, R., Shah, S., Loucks, T. M. J., Pelczarski, K., Scott Yaruss, J., Gore, K., & Nasir, S. M. (2017). Cortical dynamics of disfluency in adults who stutter. Physiological Reports, 5(9). doi:10.14814/phy2.13194Stuttering is a disorder of speech production whose origins have been traced to the central nervous system. One of the factors that may underlie stuttering is aberrant neural miscommunication within the speech motor network. It is thus argued that disfluency (any interruption in the forward flow of speech) in adults who stutter (AWS) could be associated with anomalous cortical dynamics. Aberrant brain activity has been demonstrated in AWS in the absence of overt disfluency, but recording neural activity during disfluency is more challenging. The paradigm adopted here took an important step that involved overt reading of long and complex speech tokens under continuous EEG recording. Anomalies in cortical dynamics preceding disfluency were assessed by subtracting out neural activity for fluent utterances from their disfluent counterparts. Differences in EEG spectral power involving alpha, beta, and gamma bands, as well as anomalies in phase-coherence involving the gamma band, were observed prior to the production of the disfluent utterances. These findings provide novel evidence for compromised cortical dynamics that directly precede disfluency in AWS. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society

    Single molecule experiments in biophysics: exploring the thermal behavior of nonequilibrium small systems

    Full text link
    Biomolecules carry out very specialized tasks inside the cell where energies involved are few tens of k_BT, small enough for thermal fluctuations to be relevant in many biomolecular processes. In this paper I discuss a few concepts and present some experimental results that show how the study of fluctuation theorems applied to biomolecules contributes to our understanding of the nonequilibrium thermal behavior of small systems.Comment: Proceedings of the 22nd Statphys Conference 2004 (Bangalore,India). Invited contributio

    Controlling Light Through Optical Disordered Media : Transmission Matrix Approach

    Get PDF
    We experimentally measure the monochromatic transmission matrix (TM) of an optical multiple scattering medium using a spatial light modulator together with a phase-shifting interferometry measurement method. The TM contains all information needed to shape the scattered output field at will or to detect an image through the medium. We confront theory and experiment for these applications and we study the effect of noise on the reconstruction method. We also extracted from the TM informations about the statistical properties of the medium and the light transport whitin it. In particular, we are able to isolate the contributions of the Memory Effect (ME) and measure its attenuation length
    • 

    corecore