315 research outputs found

    Extending Validated Human Performance Models to Explore NextGen Concepts

    Get PDF
    To meet the expected increases in air traffic demands, NASA and FAA are researching and developing Next Generation Air Transportation System (NextGen) concepts. NextGen will require substantial increases in the data available to pilots on the flight deck (e.g., weather,wake, traffic trajectory predictions, etc.) to support more precise and closely coordinated operations (e.g., self-separation, RNAV/RNP, and closely spaced parallel operations, CSPOs). These NextGen procedures and operations, along with the pilot's roles and responsibilities, must be designed with consideration of the pilot's capabilities and limitations. Failure to do so will leave the pilots, and thus the entire aviation system, vulnerable to error. A validated Man-machine Integration and design Analysis System (MIDAS) v5 model was extended to evaluate anticipated changes to flight deck and controller roles and responsibilities in NextGen approach and Land operations. Compared to conditions when the controllers are responsible for separation on decent to land phase of flight, the output from these model predictions suggest that the flight deck response time to detect the lead aircraft blunder will decrease, pilot scans to the navigation display will increase, and workload will increase

    Landscape preservation under post‐European settlement alluvium in the south‐eastern Australian tablelands, inferred from portable OSL reader data

    Full text link
    Human land‐use changes leading to widespread erosion and gully incision have been well studied, but the effects that erosion and sediment mixing, which accompany the deposition of post‐(European) settlement alluvium (PSA), have in valley bottoms and wetlands receive considerably less attention. PSA overlying pre‐disturbance swampy meadow (SM) wetland sediments is commonly exposed along incised stream channel gully walls throughout the south‐eastern Australian Tablelands, providing an ideal setting in which to assess and understand better how PSA deposition affects valley bottoms and the wetland environments that often occupy them. Portable optically stimulated luminescence (pOSL) reader data were measured on bulk sediment samples from SM‐PSA stratigraphies at 16 locations throughout the south‐eastern Australian Tablelands to assess the effects of erosion and sediment mixing at the SM‐PSA boundary. Trends of pOSL data with depth at each profile were used in conjunction with visual profile descriptions to identify the stratigraphic boundary between SM and PSA sediment and to infer the degree of valley bottom erosion and sediment mixing during PSA deposition. At most sites, SM sediments experienced minimal, if any, disturbance during PSA deposition, and we refer to these as non‐eroded sites. Many sites, however, experienced a significant degree of erosion and sediment mixing – eroded sites – often corresponding to visually diffuse sedimentary boundaries between the two stratigraphic units. Our findings demonstrate that SM landscapes in the Tablelands can be preserved with minimal disturbance under PSA at non‐eroded sites and are preserved beneath a mixing zone at all eroded sites. Copyright © 2016 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134129/1/esp3942.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134129/2/esp3942_am.pd

    Software to Control and Monitor Gas Streams

    Get PDF
    This software package interfaces with various gas stream devices such as pressure transducers, flow meters, flow controllers, valves, and analyzers such as a mass spectrometer. The software provides excellent user interfacing with various windows that provide time-domain graphs, valve state buttons, priority- colored messages, and warning icons. The user can configure the software to save as much or as little data as needed to a comma-delimited file. The software also includes an intuitive scripting language for automated processing. The configuration allows for the assignment of measured values or calibration so that raw signals can be viewed as usable pressures, flows, or concentrations in real time. The software is based on those used in two safety systems for shuttle processing and one volcanic gas analysis system. Mass analyzers typically have very unique applications and vary from job to job. As such, software available on the market is usually inadequate or targeted on a specific application (such as EPA methods). The goal was to develop powerful software that could be used with prototype systems. The key problem was to generalize the software to be easily and quickly reconfigurable. At Kennedy Space Center (KSC), the prior art consists of two primary methods. The first method was to utilize Lab- VIEW and a commercial data acquisition system. This method required rewriting code for each different application and only provided raw data. To obtain data in engineering units, manual calculations were required. The second method was to utilize one of the embedded computer systems developed for another system. This second method had the benefit of providing data in engineering units, but was limited in the number of control parameters

    Evaluating Nextgen Closely Spaced Parallel Operations Concepts with Validated Human Performance Models: Flight Deck Guidelines

    Get PDF
    The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events

    A Completely New Type of Actuator -or- This Ain't Your Grandfather's Internal Combustion Engine

    Get PDF
    A completely new type of actuator - one that is proposed for use in a variety of environments from sea to land to air to space - has been designed, patented, built, and tested. The actuator is loosely based on the principle of the internal combustion engine, except that it is a completely closed system, only requiring electrical input, and the working fuel is water. This paper outlines the theory behind the electrolysis- and ignition-based cycle upon which the actuator operates and describes the performance capability test apparatus and results for the actuator. A mechanism application that harnessed the unit s power to twist a scaled rotor blade is also highlighted

    A Validated Set of MIDAS V5 Task Network Model Scenarios to Evaluate Nextgen Closely Spaced Parallel Operations Concepts

    Get PDF
    The Closely Spaced Parallel Operations (CSPO) scenario is a complex, human performance model scenario that tested alternate operator roles and responsibilities to a series of off-nominal operations on approach and landing (see Gore, Hooey, Mahlstedt, Foyle, 2013). The model links together the procedures, equipment, crewstation, and external environment to produce predictions of operator performance in response to Next Generation system designs, like those expected in the National Airspaces NextGen concepts. The task analysis that is contained in the present report comes from the task analysis window in the MIDAS software. These tasks link definitions and states for equipment components, environmental features as well as operational contexts. The current task analysis culminated in 3300 tasks that included over 1000 Subject Matter Expert (SME)-vetted, re-usable procedural sets for three critical phases of flight; the Descent, Approach, and Land procedural sets (see Gore et al., 2011 for a description of the development of the tasks included in the model; Gore, Hooey, Mahlstedt, Foyle, 2013 for a description of the model, and its results; Hooey, Gore, Mahlstedt, Foyle, 2013 for a description of the guidelines that were generated from the models results; Gore, Hooey, Foyle, 2012 for a description of the models implementation and its settings). The rollout, after landing checks, taxi to gate and arrive at gate illustrated in Figure 1 were not used in the approach and divert scenarios exercised. The other networks in Figure 1 set up appropriate context settings for the flight deck.The current report presents the models task decomposition from the tophighest level and decomposes it to finer-grained levels. The first task that is completed by the model is to set all of the initial settings for the scenario runs included in the model (network 75 in Figure 1). This initialization process also resets the CAD graphic files contained with MIDAS, as well as the embedded operator models that comprise MIDAS. Following the initial settings, the model progresses to begin the first tasks required of the two flight deck operators, the Captain (CA) and the First Officer (FO). The task sets will initialize operator specific settings prior to loading all of the alerts, probes, and other events that occur in the scenario. As a note, the CA and FO were terms used in developing this model but the CA can also be thought of as the Pilot Flying (PF), while the FO can be considered the Pilot-Not-Flying (PNF)or Pilot Monitoring (PM). As such, the document refers to the operators as PFCA and PNFFO respectively

    Magnitude and Characteristics of Patients Who Survived an Acute Myocardial Infarction

    Get PDF
    BACKGROUND: The purpose of this study was to describe the magnitude and characteristics of patients who did not experience any significant major adverse cardiovascular event early (within 6 weeks) and late (during the first year) after hospital discharge for an acute myocardial infarction (AMI). METHODS AND RESULTS: Data from 12 243 patients discharged after an AMI from 233 sites across the United States in the TRANSLATE-ACS (Treatment With ADP Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events After Acute Coronary Syndrome) study were analyzed. Multivariable adjusted regression analyses modeled factors associated with 6-week and 1-year survivors who did not experience a recurrent AMI, stroke, unplanned coronary revascularization, or rehospitalization for unstable angina/chest pain during these time periods. The average age of this study population was 60.0 years, 72.0% were men, and 87.9% were white. In this population, 92.4% were classified as early low-risk survivors and 76.3% were classified as late low-risk survivors of an AMI. Factors associated with being an early and late postdischarge survivor included being male and having single-vessel coronary artery disease at the patient\u27s index hospitalization. Patients who were not first seen with any chronic health condition, had an index hospital stay of \u3c /=3 days, and had high baseline quality-of-life scores were more likely to be late low-risk survivors. CONCLUSIONS: Identifying low-risk survivors of an AMI may permit healthcare providers to focus more intensive efforts and interventions on those at higher risk of experiencing adverse cardiovascular events during the postdischarge transition period. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01088503

    Risk Factors for In-hospital Nonhemorrhagic Stroke in Patients With Acute Myocardial Infarction Treated With Thrombolysis: Results from GUSTO-I

    Get PDF
    BACKGROUND: Nonhemorrhagic stroke occurs in 0.1% to 1.3% of patients with acute myocardial infarction who are treated with thrombolysis, with substantial associated mortality and morbidity. Little is known about the risk factors for its occurrence. METHODS AND RESULTS: We studied the 247 patients with nonhemorrhagic stroke who were randomly assigned to one of four thrombolytic regimens within 6 hours of symptom onset in the GUSTO-I trial. We assessed the univariable and multivariable baseline risk factors for nonhemorrhagic stroke and created a scoring nomogram from the baseline multivariable modeling. We used time-dependent Cox modeling to determine multivariable in-hospital predictors of nonhemorrhagic stroke. Baseline and in-hospital predictors were then combined to determine the overall predictors of nonhemorrhagic stroke. Of the 247 patients, 42 (17%) died and another 98 (40%) were disabled by 30-day follow-up. Older age was the most important baseline clinical predictor of nonhemorrhagic stroke, followed by higher heart rate, history of stroke or transient ischemic attack, diabetes, previous angina, and history of hypertension. These factors remained statistically significant predictors in the combined model, along with worse Killip class, coronary angiography, bypass surgery, and atrial fibrillation/flutter. CONCLUSIONS: Nonhemorrhagic stroke is a serious event in patients with acute myocardial infarction who are treated with thrombolytic, antithrombin, and antiplatelet therapy. We developed a simple nomogram that can predict the risk of nonhemorrhagic stroke on the basis of baseline clinical characteristics. Prophylactic anticoagulation may be an important treatment strategy for patients with high probability for nonhemorrhagic stroke, but further study is needed

    The Sundowner Winds Experiment (SWEX) pilot study: Understanding downslope windstorms in the Santa Ynez Mountains, Santa Barbara, California

    Get PDF
    Sundowner winds are downslope gusty winds often observed on the southern slopes of the Santa Ynez Mountains (SYM) in coastal Santa Barbara (SB), California. They typically peak near sunset and exhibit characteristics of downslope windstorms through the evening. They are SB\u27s most critical fire weather in all seasons and represent a major hazard for aviation. The Sundowner Winds Experiment Pilot Study was designed to evaluate vertical profiles of winds, temperature, humidity, and stability leeward of the SYM during a Sundowner event. This was accomplished by launching 3-hourly radiosondes during a significant Sundowner event on 28-29 April 2018. This study showed that winds in the lee of the SYM exhibit complex spatial and temporal patterns. Vertical profiles showed a transition from humid onshore winds from morning to mid-afternoon to very pronounced offshore winds during the evening after sunset. These winds accompanied mountain waves and a northerly nocturnal lee jet with variable temporal behavior. Around sunset, the jet was characterized by strong wind speeds enhanced by mountain-wave breaking. Winds weakened considerably at 2300 PDT 29 April but enhanced dramatically at 0200 PDT 29 April at much lower elevations. These transitions were accompanied by changes in stability profiles and in the Richardson number. A simulation with the Weather Research and Forecasting (WRF) Model at 1-km grid spacing was examined to evaluate the skill of the model in capturing the observed winds and stability profiles and to assess mesoscale processes associated with this event. These results advanced understanding on Sundowner\u27s spatiotemporal characteristics and driving mechanisms
    corecore