32,589 research outputs found

    An Entrepreneurial Theory of Formal Organizations. Part I - Patterns of Formal Organizations

    Get PDF
    Theory of formal organizations with ordering of relevant dat

    Sample preparation of metal alloys by electric discharge machining

    Get PDF
    Electric discharge machining was investigated as a noncontaminating method of comminuting alloys for subsequent chemical analysis. Particulate dispersions in water were produced from bulk alloys at a rate of about 5 mg/min by using a commercially available machining instrument. The utility of this approach was demonstrated by results obtained when acidified dispersions were substituted for true acid solutions in an established spectrochemical method. The analysis results were not significantly different for the two sample forms. Particle size measurements and preliminary results from other spectrochemical methods which require direct aspiration of liquid into flame or plasma sources are reported

    Development of a drift-correction procedure for a direct-reading spectrometer

    Get PDF
    A procedure which provides automatic correction for drifts in the radiometric sensitivity of each detector channel in a direct-reading emission spectrometer is described. Such drifts are customarily controlled by the regular analyses of standards, which provide corrections for changes in the excitational, optical, and electronic components of the instrument. This standardization procedure, however, corrects for the optical and electronic drifts. It is a step that must be taken if the time, effort, and cost of processing standards is to be minimized. This method of radiometric drift correction uses a 1,000-W tungsten-halogen reference lamp to illuminate each detector through the same optical path as that traversed during sample analysis. The responses of the detector channels to this reference light are regularly compared with channel response to the same light intensity at the time of analytical calibration in order to determine and correct for drift. Except for placing the lamp in position, the procedure is fully automated and compensates for changes in spectral intensity due to variations in lamp current. A discussion of the implementation of this drift-correction system is included

    Quantum Channels and Representation Theory

    Full text link
    In the study of d-dimensional quantum channels (d≥2)(d \geq 2), an assumption which is not very restrictive, and which has a natural physical interpretation, is that the corresponding Kraus operators form a representation of a Lie algebra. Physically, this is a symmetry algebra for the interaction Hamiltonian. This paper begins a systematic study of channels defined by representations; the famous Werner-Holevo channel is one element of this infinite class. We show that the channel derived from the defining representation of SU(n) is a depolarizing channel for all nn, but for most other representations this is not the case. Since the Bloch sphere is not appropriate here, we develop technology which is a generalization of Bloch's technique. Our method works by representing the density matrix as a polynomial in symmetrized products of Lie algebra generators, with coefficients that are symmetric tensors. Using these tensor methods we prove eleven theorems, derive many explicit formulas and show other interesting properties of quantum channels in various dimensions, with various Lie symmetry algebras. We also derive numerical estimates on the size of a generalized ``Bloch sphere'' for certain channels. There remain many open questions which are indicated at various points through the paper.Comment: 28 pages, 1 figur

    Inverse hyperbolic problems and optical black holes

    Get PDF
    In this paper we give a more geometrical formulation of the main theorem in [E1] on the inverse problem for the second order hyperbolic equation of general form with coefficients independent of the time variable. We apply this theorem to the inverse problem for the equation of the propagation of light in a moving medium (the Gordon equation). Then we study the existence of black and white holes for the general hyperbolic and for the Gordon equation and we discuss the impact of this phenomenon on the inverse problems

    D3-D7 Holographic dual of a perturbed 3D CFT

    Full text link
    An appropriately oriented D3-D7-brane system is the holographic dual of relativistic Fermions occupying a 2+1-dimensional defect embedded in 3+1-dimensional spacetime. The Fermions interact via fields of N=4{\mathcal N}=4 Yang-Mills theory in the 3+1-dimensional bulk. Recently, using internal flux to stabilize the system in the probe N7<<N3N_7<<N_3 limit, a number of solutions which are dual to conformal field theories with Fermion content have been found. We use holographic techniques to study perturbations of a particular one of the conformal field theories by relevant operators. Generally, the response of a conformal field theory to such a perturbation grows and becomes nonperturbative at low energy scales. We shall find that a perturbation which switches on a background magnetic field BB and Fermion mass mm induces a renormalization group flow that can be studied perturbatively in the limit of small m2/Bm^2/B. We solve the leading order explicitly. We find that, for one particular value of internal flux, the system exhibits magnetic catalysis, the spontaneous breaking of chiral symmetry enhanced by the presence of the magnetic field. In the process, we derive formulae predicting the Debye screening length of the Fermion-antiFermion plasma at finite density and the diamagnetic moment of the ground state of the Fermion system in the presence of a magnetic field.Comment: 23 pages, two figures; typos corrected, some comments adde

    Bragg Spectroscopy of Cold Atomic Fermi Gases

    Full text link
    We propose a Bragg spectroscopy experiment to measure the onset of superfluid pairing in ultracold trapped Fermi gases. In particular, we study two component Fermi gases in the weak coupling BCS and BEC limits as well as in the strong coupling unitarity limit. The low temperature Bragg spectrum exhibits a gap directly related to the pair-breaking energy. Furthermore, the Bragg spectrum has a large maximum just below the critical temperature when the gas is superfluid in the BCS limit. In the unitarity regime, we show how the pseudogap in the normal phase leads to a significant suppression of the low frequency Bragg spectrum.Comment: 8 pages, 9 figures. Typos corrected. Reference update
    • …
    corecore