75 research outputs found

    Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique.

    Get PDF
    The objective of this study was to develop a biomimetic, highly porous collagen-hydroxyapatite (HA) composite scaffold for bone tissue engineering (TE), combining the biological performance and the high porosity of a collagen scaffold with the high mechanical stiffness of a HA scaffold. Pure collagen scaffolds were produced using a lyophilization process and immersed in simulated body fluid (SBF) to provide a biomimetic coating. Pure collagen scaffolds served as a control. The mechanical, material, and structural properties of the scaffolds were analyzed and the biological performance of the scaffolds was evaluated by monitoring the cellular metabolic activity and cell number at 1, 2, and 7 days post seeding. The SBF-treated scaffolds exhibited a significantly increased stiffness compared to the pure collagen group (4-fold increase), while a highly interconnected structure (95%) was retained. FTIR indicated that the SBF coating exhibited similar characteristics to pure HA. Micro-CT showed a homogeneous distribution of HA. Scanning electron microscopy also indicated a mineralization of the collagen combined with a precipitation of HA onto the collagen. The excellent biological performance of the collagen scaffolds was maintained in the collagen-HA scaffolds as demonstrated from cellular metabolic activity and total cell number. This investigation has successfully developed a biomimetic collagen-HA composite scaffold. An increase in the mechanical properties combined with an excellent biological performance in vitro was observed, indicating the high potential of the scaffold for bone TE

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    GesRec3D: a real-time coded gesture-to-speech system with automatic segmentation and recognition thresholding using dissimilarity measures

    Get PDF
    A complete microcomputer system is described, GesRec3D, which facilitates the data acquisition, segmentation, learning, and recognition of 3-Dimensional arm gestures, with application as a Augmentative and Alternative Communication (AAC) aid for people with motor and speech disability. The gesture data is acquired from a Polhemus electro-magnetic tracker system, with sensors attached to the finger, wrist and elbow of one arm. Coded gestures are linked to user-defined text, to be spoken by a text-to-speech engine that is integrated into the system. A segmentation method and an algorithm for classification are presented that includes acceptance/rejection thresholds based on intra-class and inter-class dissimilarity measures. Results of recognition hits, confusion misses and rejection misses are given for two experiments, involving predefined and arbitrary 3D gestures
    corecore