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Abstract. In the field of Human-Computer Interaction (HCI), gesture 

recognition is becoming increasingly important as a mode of communication, in 

addition to the more common visual, aural and oral modes, and is of particular 

interest to designers of Augmentative and Alternative Communication (AAC) 

systems for people with disabilities. A complete microcomputer system is 

described, GesRec3D, which facilitates the data acquisition, segmentation, 

learning, and recognition of 3-Dimensional arm gestures. The gesture data is 

acquired from a Polhemus electro-magnetic tracker system, where sensors are 

placed on the finger, wrist and elbow of one arm. Coded gestures are linked to 

user-defined text, to be typed or spoken by a text-to-speech engine, which is 

integrated into the system. A segmentation method and an algorithm for 

classification are both presented, which includes acceptance/rejection 

thresholds based on intra-class and inter-class dissimilarity measures. Results of 

recognition hits, confusion misses and rejection misses are given for two 

experiments, involving predefined and arbitrary 3D gestures. 

1 Background and Motivations 

Gestures, comprising complex shapes and movements of the body, are recognised and 

used effortlessly by humans, enabling a rich communication in combination with 

visual, aural and oral forms. However, whilst speech and image processing are mature 

areas in the field of Human-Computer Interaction (HCI), recognition of gestures is 

still relatively undeveloped. In addition to this, there is great interest in multi-modal 

HCI techniques that integrate speech, vision and gesture. Gesture recognition is also 

an important addition to Augmentative and Alternative Communication (AAC) 
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technology, as the needs of many disabled people may be better served by 

consideration of all potential means of their interaction with computers and 

communication aids, especially when one or more senses or body functions are 

impaired. With the increased availability of new input devices for virtual reality, 

computer games, and computer aided design, there is an even greater need for 3D 

gesture recognition. 

Much of the published literature can be placed in the following categories: 

extensions of character and speech recognition techniques to 2D and 3D 

gestures[1,2]; recognition of hand gestures for sign language and other applications, 

for example[3,4,5]; and mapping of gestures to speech parameters[6,7]. There are also 

attempts to replace the traditional mouse in software applications, for example 

gestures drawn with the mouse which replace the function of the mouse buttons[8], or 

through the use of head gestures[9]. We have previously used 2D projections of arm 

movements in the GesRec system[10].  

The need for invariance of one kind or another often determines the type of 

algorithm e.g. spatial moments for characters, „dynamic time-warping‟ for speech. 

These considerations are especially true in the application of gesture recognition to 

HCI for disabled users where it may be important to preserve as many degrees of 

freedom as possible e.g. a person may have limited range of movement, but have a 

controllable speed for that movement. We make the following observations for 

gestures (although short of a more rigorous psycholinguistic approach): 

 

 Timing is important. Whereas speech recognition often employs time invariance to 

account for speaking rate or speaker variability, people can time gestures fairly 

accurately and use faster or slower forms of the same body movement to good 

effect. 

 Size is important. Whereas character recognition methods often employ size 

invariance, the size range of natural gestures is quite large, and a large movement 

can have a different meaning than a small one of a similar shape. 

 Translation invariance is still important, although gestures may have different 

meanings when made in relation to different parts of the body or to other objects. 

 Rotational invariance may still be important, although gestures are often made in a 

fixed relation to another person, and limb movements performed at different angles 

with respect to the body can have different meanings. 

 

Furthermore, it is often difficult to scale algorithms to 3D, as we have found with 

our previous implementations of neural networks and dynamic programming, so we 

are motivated to find  computationally simpler matching algorithms such as proposed 

below. Others have made progress with Hidden Markov Models, for example 

Hofmann et al[11], although training times were still reported to be long, and also 

with Time-Delay Radial Basic Function neural networks, for which Howell and 

Buxton used pseudo-inverse weight matrix calculations which avoids stability 

problems associated incremental learning algorithms like backpropagation[12]. The 

latter example uses a fixed time window so results differ depending on the speed of 

the gesture, but the authors state that may be an advantage in distinguishing difference 

in “intentional force”, as we have similarly suggested above. 
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In this work, however, the main motivation is dealing correctly with unintentional 

gestures. The proposed method of doing this is to incorporate rejection criteria into 

both the segmentation and the recognition methods. The latter is achieved by 

constructing a dissimilarity matrix for the entire gesture set and using this information 

to calculate acceptance/rejection thresholds automatically. The time taken to compute 

this matrix is dependent on the complexity of the matching algorithm. 

2 Method 

2.1 Data acquisition 

Real-time gesture information was obtained from a Polhemus 3SPACE FASTRAK 

six-degrees-of-freedom (6DOF) electro-magnetic tracking system[13], comprising of 

a transmitter module and 3 sensors placed on the finger, wrist and elbow of one arm 

(Fig.1). The tracker was interfaced to a Pentium 133MHz PC with a 16-bit 

SoundBlaster sound card capable of supporting the Creative TextAssist text-to-speech 

engine.  

 

Fig. 1. 3D Gesture acquisition system using a Polhemus 3SPACE FASTRAK electro-

magnetic tracker 

 

Software GesRec3D was designed to perform the data acquisition from the tracker, 

by prompting the user for several examples of different gestures in a guided training 

session. Each different gesture could be freely associated with a text string to be 

spoken out loud by the text-to-speech engine. The software thus implemented a 

limited vocabulary gesture-to-speech application. The application was designed to 

support training and data storage of 5 examples of up to 30 gestures of a maximum 

200 samples, at 20 samples a second from each sensor (i.e. 10 seconds of data per 
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gesture), together with storage of all the associated text-to-speech data and training 

parameters. The system also produced a continuous text format time-stamped log of 

the raw Polhemus gesture data for superimposing on to video footage of users during 

training and evaluation sessions. 

 

 

Fig. 2. Traces from 3 sensors attached to the elbow, wrist, and finger (shown left to right) 

Fig. 2 shows the main window of GesRec3D indicating a technique we have used 

to provide visual feedback to the user of their gestures, where movement of each the 

three sensors in the plane of the computer screen is shown as a 2D trace, and the third 

axis (distance from the computer screen) is represented as the radius of a circle. The 

sample spacing gives an indication of speed. When the arm is moved, the movement 

of the links and changing radii creates an adequate sensation of 3D movement with a 

minimum of processing. 

2.2 Segmentation 

A generalised D-dimensional gesture or character can be described after segmentation 

as a sequence of m co-ordinates,  

G = g0g1…gm  (1) 

where gi =  gi(Xi1, ..,XiD).  
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The 6DOF data available from the FASTRAK consists of both position and angle 

information. However, an early design decision was taken to use only the (x,y,z) 

position data from each of the 3 receivers and ignore the angle data, since translation 

invariance with respect to the transmitter is easily realised, whereas relative 

orientation angles change with distance. If needed, angles between receivers could be 

obtained from the position data. Furthermore, when receivers are placed on a person's 

body by attaching them to arm and finger bands, these may slip round and cause 

significant errors in measurement of orientation, whereas the effect of this on position 

is less of a problem. 

We make a distinction here between coded and continuous gestures, analogous to 

isolated characters vs. cursive scripts or isolated words vs. continuous speech. The 

coded gestures used in this work have explicit start and end states, and so require a 

segmentation strategy to identify these. We devised such a segmentation strategy 

using five user adjustable parameters as follows: 

 

1. Start Gesture Sample Spacing sstart - When the user is at rest the recogniser remains 

in a start state, where a sample counter is reset to zero. The start of gesture 

condition is such that the distance between fixed interval samples in any one of the 

(x,y,z) coordinates must be greater than or equal to sstart. This parameter has a small 

default value so that only a small movement is required to start the gesture, but 

may be increased for users with continuous involuntary movements e.g. tremor. 

2. End Gesture Sample Spacing send -  After the start condition is met, the spacing is 

increased so that a larger movement is required to continue the gesture. If the 

differences between samples in all of the (x,y,z) coordinates are less than send, an 

end phase is entered, otherwise the gesture is continued. 

3. Minimum samples mmin - This parameter is chosen to ensure that short gestures 

(with m<mmin) are ignored. If the end phase is entered before mmin  samples have 

been obtained, the recogniser is immediately reset to its starting state.   

4. End Gesture Time-out tend - In the end phase, the send condition must continue to be 

met for a time tend, otherwise the timer is reset and the gesture is continued. When 

the timer times-out, the gesture is ended and recognition can be attempted. The 

recogniser will have obtained a further tendrs samples during the end phase (where 

rs is the sample rate), which are ignored. 

5. Training Delay tdelay - This parameter is used to allow the user enough time to 

return to the start position during training. The recogniser is forced to remain in the 

start state for a time tdelay. The parameter is only used in training, so that in normal 

use the recogniser is always ready for a new gesture. 

 

It should be noted that natural gestures that are characterised by „preparation - 

stroke - retraction‟ may have a steady state after the stroke phase is completed which 

is indistinguishable from an end state. If so, the retraction phase may be ignored, 

which should not be a problem so long as the stroke phase contains enough 

information to describe the gesture.  
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2.3 Dissimilarity measure 

One computationally inexpensive dissimilarity measure between D-dimensional 

numeric variables uses the city block metric[14]: 
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where the wk are used to scale the variables if necessary.  

In order to use this to compare equal length sequences of 3D samples, values are 

accumulated over m samples and normalised. As the three dimensions of position 

have equal weight, only a single scaling factor W is needed which is usefully 

employed in our application to scale the data to integer values and thus speed up 

computation. Hence, the dissimilarity measure between two gestures of equal length 

is given by: 
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In practice, two gestures will be of different lengths, so either the gestures or the 

measure must be modified to take account of this. If we are employing time 

invariance, we can interpolate the shortest gesture to equalise the number of samples, 

and use Equation 3 directly. However, as stated earlier, we would rather use the 

mismatch in length as a distinguishing factor, so instead we propose the following 

modification to the measure for two gestures Ga and Gb: 
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where ma>mb and gj=(0,0,0) for j>mb.  

Thus length mismatch is penalised in two ways, firstly by comparing the length 

mismatched part of the longer gesture with zeros, and secondly by normalising to the 

smallest length. The measure reduces to Equation 3 when ma=mb. 

2.4 Acceptance threshold 

After a training session is completed and the system has acquired enough examples of 

each gesture class, we can calculate dab for each pair of gestures. For C gesture classes 

and n examples of each class, this yields a square nCnC dissimilarity matrix. We 

now show how to use this matrix to find an acceptance threshold between each pair of 

classes. 

Within each class we find the largest value of dab, denoted by the worst internal (or 

intra-class) match dint. For consistently made gestures this value should be small, so it 

gives us a good measure of repeatability. Between a class and each of the other 

classes we find a minimum value of dab, denoted by the best external (or inter-class) 
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match dext, which should preferably be much larger than dint to prevent confusion 

between classes.  

We are now in a position to define an acceptance threshold dth between any two 

classes: 

 extth dd
K

d  int
2

 
(5) 

For K=1, and dext > dint this is half way between the worst internal match and best 

external match and so forms a rejection threshold between non-overlapping classes. 

However, for very poor matches between classes dext may be many times greater than 

dint, making the rejection threshold far greater than necessary. To avoid this situation, 

an upper bound can be specified for dth. 

For dext < dint, the rejection threshold is less than dint but as this is between the least 

similar examples of a class, a match with another more similar example is still 

possible.   

If K is decreased, the rejection condition is made stricter, and if increased, it can be 

made less strict. To allow manual adjustment of the threshold, it was decided to add 

the facility of a global percentage increase or decrease of K  to the user interface. 

2.5 Recognition 

To achieve recognition of an unknown gesture, G, that gesture is matched with every 

gesture in the training set, repeatedly applying Equation 4 to find the winning class 

with dissimilarity dmin. Considering matches between gestures measured using a 

single sensor, the recognition process is as follows:  

 

1. Find gesture class corresponding to dmin  

2. If dmin<dth select that class, otherwise reject the gesture  

3. Perform action linked to the selected gesture class  

 

For multiple sensors it is necessary to combine the dissimilarity measures from 

each sensor in some way. We chose to do this by adding the dissimilarity measures 

obtained for each sensor, and also the corresponding rejection thresholds.  

This gives an overall rejection condition, but the problem remains of which class to 

choose, as the different sensors may not agree. Of course, we could insist that all (or 

the majority) of sensors do agree, but in practice we found the rejection rate to be too 

high. Instead we chose the class selected for the finger sensor, as that movement is the 

greatest, and was considered to be most variable between gestures. The option of 

whether to use a  primary sensor or whether to use the stricter condition of some or all 

sensors agreeing can be left under the control of the user. Thus the multiple sensor 

recognition process is: 

 

1. Find gesture class with dmin for each sensor  

2. (optional: reject gesture if classes are different) 

3. Find dth for each class for all sensors 

4. Add the dmin 
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5. Add the dth  

6. If  dmin < dth select the class corresponding to primary sensor, otherwise reject 

gesture 

7. Perform action linked to the selected gesture class 

3 Experiments and Results 

3.1 Experiment 1 - 'Shapes' 

The first experiment was devised to test the segmentation and thresholding abilities 

for simple gestures of different sizes and drawing speeds. An able-bodied user was 

asked to train the system using three different easily remembered shapes - CIRCLE, 

TRIANGLE, and  SQUARE. Each shape had two different sizes, SMALL and 

LARGE, and for each size two speeds, FAST and SLOW.  Thus the training set 

consisted of a total of 12 gestures, each to be entered 5 times. A table was constructed 

containing text corresponding to each gesture so that after training the text-to-speech 

synthesiser would speak the words associated with each gesture e.g. "Small Fast 

Circle". 

It is important from a user's point of view that the effect of changing any parameter 

is understood and intuitive. Thus, all segmentation parameters were placed together in 

a dialog box which could accessed from a windows menu item. The start and end 

sample spacings were presented as integer values in a fixed range of 1 to 20 

millimetres, set using a scroll bar control.  The default sstart was set to 2mm, and the 

default send to 6mm. The minimum samples parameter mmin was controllable in the 

range 2 to 30 samples, with a default of 10 so that a gesture of duration less than 0.5 

second would be ignored. Time-outs are similarly adjusted, using scroll bars with 

values at 0.1 second intervals, in the range 0 to 10 seconds. The default end gesture 

time-out tend was set to 0.2 second, and the training delay tdelay to 1 second. The global 

threshold modifier was set to 0, with a range of -100 to 100%. In practice most able-

bodied users could use the default values without modification to achieve a 

satisfactory segmentation. However, in preliminary trials with users with motor 

disabilities e.g. cerebral palsy, it was generally necessary to increase all the 

segmentation parameters to some extent, to account for continuous involuntary 

movements. 
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Fig. 3. Examples of gestures used in the shapes experiment, shown as (x-y) 2D 

projections of  the 3D data from the finger sensor 

Fig. 4. Examples of LARGE SLOW gestures used in the shapes experiment, shown as 

superimposed  (x-y) 2D projections of the 3D data from all three sensors (finger, wrist, elbow) 

Fig. 3 shows examples of the gestures in two groups, (a) FAST and (b) SLOW, 

captured from the finger sensor at a 20Hz sample rate. All gestures were drawn in a 

clockwise direction. The slower set of gestures can be identified by the greater 

number of samples obtained. Fig. 4 shows examples of LARGE SLOW gestures for 

each shape, simultaneously showing data from all three sensors, in this case mounted 

on the left arm. The largest traces are for the finger, the medium size traces for the 

wrist, and the smallest for the elbow. 

Training of the system took only 5 minutes for the total of 60 gestures entered. 

Calculation of the 6060 dissimilarity matrix took approximately 0.06 seconds per 

sensor i.e. 0.17 seconds in total for the 3 sensors on the Pentium 133MHz PC. This 

was much faster than for time invariant matching calculated using dynamic time 

warping, which took 7.47 seconds, though the aforementioned linear time-invariant 

version could be computed in 0.6 seconds.  

(a) FAST      (b) SLOW
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Fig. 5 shows a graphical representation of one row of the dissimilarity matrix 

computed for the finger sensor, showing the distances (normalised in the range 0 to 1) 

between one example of the SMALL FAST CIRCLE (SFC) gesture class with all 

other gestures in the training set. For each class, the best and worst matches to SFC 

are given. Within class SFC, the best match is 0, resulting from that gesture being 

matched to itself. The greatest intra-class dissimilarity for SFC is less than the 

smallest inter-class dissimilarity (in this case for SFT), indicating that SFC is fairly 

well separated from the other classes, and that examples of that class have good 

repeatability. It can be observed that the closest gesture classes to SFC are those with 

similar size and speed, and that after circles, the better matches are obtained for 

triangles, and then squares. Though the example is somewhat artificial, these results 

do show the advantage of maintaining both spatial and temporal characteristics of the 

gestures.  

After training, each user was asked to enter each of the training gestures, and also 

introduce gestures not in the training set. Table 1 shows the results for one user,  

testing with 50 examples of each gesture classes. It can be seen that recognition hits 

varied between 82-96% depending on the gesture. There are in general fewer misses 

from confusion than rejection. In addition 100 arbitrary gestures were made, of which 

all but one were rejected. More importantly, movements made by the user moving to 

the start positions of intended gestures (or retracting from the previous gesture) were 

all rejected. These results do not include any additional small movements rejected 

during segmentation, as these are not passed to the recogniser. 

 

Fig. 5. Intra-class and inter-class dissimilarity measures for the SMALL FAST 

CIRCLE gesture (data from finger sensor) 
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Table 1. Recognition results for  shapes gestures (50 of each class) 

 
Shape Hits out 

of 50 

Confusion 

Misses 

Rejection 

Misses 

SMALL FAST CIRCLE (SFC) 45 2 3 

LARGE FAST CIRCLE (LFC) 45 1 4 

SMALL SLOW CIRCLE (SSC) 44 2 4 

LARGE SLOW CIRCLE (LSC) 46 2 2 

SMALL FAST SQUARE (SFS) 41 4 5 

LARGE FAST SQUARE (LFS) 43 3 4 

SMALL SLOW SQUARE (SSS) 45 3 2 

LARGE SLOW SQUARE (LSS) 47 1 2 

SMALL FAST TRIANGLE (SFT) 44 3 3 

LARGE FAST TRIANGLE (LFT) 48 1 1 

SMALL SLOW TRIANGLE (SST) 47 1 2 

LARGE SLOW TRIANGLE (LST) 48 1 1 

3.2 Experiment 2 - 'Greetings' 

The second experiment was devised to test the full 3D capability of the system, since 

in the first experiment the gestures were made in a plane even though all data was 

processed in 3D. An able-bodied user was asked to make up a set of ten arbitrary 

gestures using one arm to be used for greeting another person, including two 

additional gestures to say the greetings or to delete the greetings instead of saying 

them. After training, the user was asked to make a further 20 examples of each 

gesture for testing purposes.  

Table 2. Recognition results for 3D gestures used in greetings, scored out of 20 

(brackets give corresponding results with rejection thresholds decreased by 10%) 

 
Gesture Description Output 

Text/Speech 

Hits 

out of 20 

Confusion 

Misses 

Rejection 

Misses 

Hand up "Hello" 18   (17) 1    (0) 1    (3) 

Hand up and wave "Goodbye" 19   (19) 0    (0) 1    (1) 

Hand left across body "How are you" 19   (18) 0    (0) 1    (2) 

Hand up & down twice "Very well" 20   (19) 0    (0) 0    (1) 

Hand up & down left 

diagonal 

"Please" 18   (18) 0    (0) 2    (2) 

Hand up & down right 

diagonal 

"Thank you" 20   (20) 0    (0) 0    (0) 

Point to self "My name is …"  20   (19) 0    (0) 0    (1) 

Point forward "What is your 

name" 

19   (18) 1    (0)  0    (2) 

Point behind "See you later" 15   (15) 2    (1) 3    (4) 

Point from mouth "Say" 19   (19) 0    (0) 1    (1) 

Thumb up "Okay" 20   (20) 0    (0) 0    (0) 

Make a cross shape "Delete All" 18   (18) 0    (0) 2    (2) 
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Fig. 6. Intra-class and inter-class dissimilarity measures for a "Hello" gesture using 

data from finger, wrist and elbow sensors  

The set of 12 gestures is shown in Table 2, together with the recognition results. 

The numbers in brackets are the results obtained when K was decreased by 10% using 

the global threshold modifier. The effect of this is that confusion misses are almost 

eliminated, whereas rejection misses are increased, and overall recognition rate is 

slightly reduced. 

Fig. 6 shows the values from the row of the dissimilarity matrix corresponding to 

one of the "Hello" gestures for each of the three sensors. The data is used directly by 

the software to calculate the rejection threshold for the "Hello" gesture class using the 

method described earlier i.e. computed from the worst intra-class match for "Hello" 

and the best inter-class match which in this case is with the "See you later" gesture. 

The ambiguity of these two gesture classes is reflected in the recognition results, for 

which several gestures are seen to have been either confused or rejected. The only 

other gesture class which resulted in a confusion miss in the test set was "What is 

your name", which is also similar to "Hello". Thus the information obtained from the 

dissimilarity matrix usefully complements the test data. 
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4 Discussion and Conclusions 

The results from the two experiments show that the GesRec3D system is able to 

acquire and classify gestures that have been learnt by example, utilising both spatial 

and temporal characteristics of the gestures. The algorithm described gave usable 

recognition rates (the sample size is too small to say anything rigorous at this point), 

but more significantly the rejection technique is fast, and allows a user to easily trade-

off the recognition rate with rejection rate by the use of the global threshold modifier. 

The segmentation method worked well for able-bodied users and also in 

preliminary trials with disabled users. Some intervention was needed to help the non-

technical expert understand the effects of adjusting the segmentation parameters, 

which suggests the need to automate this as part of the training procedure. It would 

also be useful to make the parameters less device dependant e.g. independent of 

sampling rate.  

Once the parameters were correctly set, a remaining difficulty was the stamina of 

the user, especially in training, which in our experience limited the number of 

gestures trained in one session to between 3 and 5 for the majority of our participants 

with motor disability. This stresses the need to keep the number of training examples 

as small as possible, and to allow incremental training. As it stands, the GesRec3D 

system works with only 5 examples of each gesture, and the training data can be 

saved and reloaded at any point during the training, after which training is continued 

from the point where the data was last saved. Furthermore, new gestures can be added 

at any time, and the text or speech corresponding to a gesture can be changed after 

training if necessary. 

Some of the children with motor disability who tried the system were motivated as 

much by the visual feedback as the speech, and one child even modified a gesture to 

produce a more pleasing trace pattern on the computer screen. Although visual 

feedback is not in principle needed for our system to function, the motivational aspect 

could be looked into further.  

Computation of the dissimilarity matrix is fast enough for it to be carried out at 

program run-time, so it does not need to be stored. We have also implemented 

modifications of the matching algorithms involving a pre-filtering step using a 

variable-width averaging filter, in an attempt to remove tremor. In this case it is 

necessary to recalculate the dissimilarity matrix every time the filter width is changed, 

which would not be practical if the computation were to take much more than a 

second. The small computational overhead of the described rejection threshold 

method provides the means for a user to quickly compare different filter widths. 

The graphical information from the dissimilarity matrices indicates which gestures 

are consistently made, as well as distances between gesture classes. This information 

could be processed further and used to provide intelligent feedback to the user in the 

form of suggestions to repeat or change a particular gesture if it is too different from 

another in the same class, or if it is too much like a gesture in a different class. Such 

an intelligent system could also suggest parameter adjustments to help improve 

recognition, or preferably facilitate automatic adjustment.  

Recent work has been reported which also utilises dissimilarity measures. Milios 

and Petrakis used dynamic programming and dissimilarity cost to compare hand 
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shapes for image retrieval, with favourable comparison to fourier descriptors and 

moments[15]. Long et al[16] have used dissimilarity measures for pen gestures using 

selected features from Rubine[1] and the authors state an interest in creating gesture 

sets with good memorability and learnability, by relating these to similarity. The latter 

will be of importance for persons with cognitive impairment in addition to motor 

disability, and this could also be a useful avenue of research in the field of AAC.  

In conclusion, the GesRec3D system has provided us with a good test-bed with 

which to examine improved gesture recognition algorithms. It is intended that future 

work and user trials will result in a viable user-friendly communication system for 

people with motor and speech disabilities. 
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