27 research outputs found

    Microfiber-Lithium Niobate on Insulator Hybrid Waveguides for Efficient and Reconfigurable Second-Order Optical Nonlinearity on a Chip

    Get PDF
    We present an optical microfiber-lithium niobate on insulator (MF-LNOI) hybrid waveguide for efficient second-order nonlinear processes. The structure combines the advantages of low-loss fiber and high-nonlinearity waveguide systems. We demonstrate the possibility of phase matching between fundamental and second harmonics in a wide spectral and dimensional range, and efficient second harmonic generation over sub-millimeter propagation distances, both of which are very attractive for high-density on-chip integration

    Parametric instabilities of microcavity polaritons in a periodic potential

    Get PDF

    Solitons in hollow core photonic crystal fiber:Engineering nonlinearity and compressing pulses

    Get PDF
    International audienc

    Modulational instability in a silicon-on-insulator directional coupler: Role of the coupling-induced group velocity dispersion

    Get PDF
    We report frequency conversion experiments in silicon-on-insulator (SOI) directional couplers. We demonstrate that the evanescent coupling between two subwavelength SOI waveguides is strongly dispersive and significantly modifies modulational instability (MI) spectra through the coupling induced group velocity dispersion (GVD). As the separation between two 380-nm-wide silicon photonic wires decreases, the increasing dispersion of the coupling makes the GVD in the symmetric supermode more normal and suppresses the bandwidth of the MI gain observed for larger separations
    corecore