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Abstract— We have demonstrated nonlinear propagation in a 

3-cell hollow core photonic crystal fiber. The reduced core size 

increases the nonlinear coefficient of the guided mode. However, 

the reduction in the expected soliton energy is small (a factor of 

approximately 2) as the dispersion of this fiber is also increased 

by the smaller core. We also demonstrate soliton compression 

using a 35m 7-cell tapered fiber, compressing picosecond input 

pulses by over an order of magnitude. 

 

 

Index Terms—Optical fibers, Optical solitons, Optical 

propagation in nonlinear media, Optical pulse compression. 

I. INTRODUCTION 

 

ollow core photonic crystal fiber (HC-PCF) is an ideal 

medium for the delivery of ultra-short, high peak power 

pulses. As the guidance mechanism of a photonic bandgap 

allows the use of an air core, the guided mode experiences low 

nonlinearity compared to conventional solid core fiber. The air 

core also means material dispersion is largely irrelevant. The 

dispersion is set by the waveguide dispersion of the defect that 

forms the core, and by the bandgap dispersion of the cladding.  

Therefore, scaling the cladding size (and simultaneously the 

core size) allows the dispersion curve to be shifted to different 

wavelengths.  

These two facts make the delivery and manipulation of 

femtosecond solitons in HC-PCF viable over a wide range of 

wavelengths. Soliton delivery in HC-PCF was first 

demonstrated at 1.5μm wavelength by Ouzounov et al [1], and 

later by Luan et al at 800nm [2]. The ability of HC-PCF to 

deliver ultra-short pulses with several orders of magnitude 

higher peak power than conventional solid core fiber was 

revolutionary. 

In this paper, we will first explore the nonlinear response of 

HC-PCF then discuss its use for soliton propagation and 

compression. We report two experimental studies; one of the 

nonlinear response of a 3-cell HC-PCF, and the second of 
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compression of picosecond pulses by a factor of more than 10 

times using a 7-cell tapered HC-PCF. 

 

II. PRINCIPLES 

A. Nonlinearity 

Nonlinearity in optical fibers causes a host of effects; self 

phase modulation (SPM), four-wave mixing and Raman gain 

to mention a few. For many applications, the delivery of ultra-

short pulses using fiber optics at the highest possible pulse 

energies is desirable. However, if nonlinear effects dominate 

then the pulses’ temporal and spectral shape will change 

radically during propagation. 

As the (Kerr) nonlinear response of air is of the order of a 

thousand times less than that of silica, the maximum peak 

power that can be transmitted without nonlinear effects for a 

given pulse length is greatly increased in HC-PCF compared 

with a conventional solid core fiber. When combined with the 

unusual group-velocity dispersion of HC-PCF, which is 

anomalous over much of the low-loss transmission window, 

this makes HC-PCFs an obvious means to deliver high-power 

ultra-short pulses as optical solitons. 

Optical solitons occur when the competing effects of 

anomalous dispersion and SPM counteract each other in 

exactly such a way that the pulse propagates as if affected by 

neither [3]. In a Raman inactive, loss-less medium, and in the 

absence of higher-order dispersion, the soliton existence 

condition is (1), [4]. 
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In (1), τFWHM is the temporal pulse length, N is the soliton 

order number (N = 1 for fundamental solitons), λ is the 

wavelength, D is the dispersion, Aeff  is the effective area, n2 is 

the Kerr nonlinear coefficient related to the third order 

nonlinear susceptibility tensor and E is the pulse energy. 
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The creation of solitons in HC-PCF previously required 

large and expensive amplified solid state laser systems, due to 

the high peak power requirements [1], [2]. However, recently 

it has been shown that an amplified mode-locked fiber laser 

has sufficient peak power to create picosecond and 

femtosecond solitons in such fibers. In fact, the use of the 

anomalous dispersion of the HC-PCF is a useful means of 

compensating the chirp that the output pulses from such a 

laser system acquires as a result of propagating though the 

amplifying fiber [5], [6], [7].  

The energies available from femtosecond fiber lasers are of 

the order of the soliton energy in HC-PCF. Amplified solid 

state laser systems which provide an order of magnitude more 

energy are often used, but they are more expensive, require 

frequent servicing and have a large footprint. These factors 

rule out their use for many commercial and industrial 

applications. Therefore, if the nonlinearity of HC-PCF could 

be altered it would make them a more versatile choice for 

experiments with both amplified mode-locked fiber lasers and 

unamplified mode-locked bulk lasers. A HC-PCF with 

increased nonlinear response would help fill the gap (of 

several orders of magnitude!) in nonlinearity between large 

core silica fibers and regular HC-PCF, thus allowing the 

transmission of solitons with intermediate pulse energies. 

The nonlinear response of a HC-PCF does not come solely 

from the air core. Part of the guided mode (typically ~1%) 

overlaps with the glass, and this contributes significantly to 

the Kerr nonlinearity because the nonlinear refractive index n2 

[4] of silica is three orders of magnitude greater than that of 

air. The approach we chose to increase the nonlinearity of HC-

PCF was to fabricate a fiber in which the core consisted of a 

defect of 3 unit cells of the periodic cladding instead of the 

more common 7. Reducing the core area will not only increase 

the intensity of the light contained within the core but it will 

also increase the modal overlap with the silica cladding. A 3-

cell fiber was previously reported by Petrovich et al [8]. 

It is worth noting that different 7-cell fibers (i.e. those with 

a core size of seven unit cells) can vary substantially in their 

optical response. Most 7-cell fibers are designed to have a 

mode that has very little overlap with the glass and a large 

transmission bandwidth. In order to achieve this, these fibers 

usually have a cladding with a very high air filling fraction 

(around 95%) and where the wall of glass surrounding the 

core has an optimized thickness [9], [10]. 

We modeled changing the pitch and air filling fraction of a 

7-cell HC-PCF in such a way that the high frequency edge of 

the bandgap was fixed. We then calculated the effect that this 

has on both the dispersion and the nonlinearity as a function of 

wavelength, Fig. 1. 

 Increasing the air filling fraction and pitch in such a way, 

increases the spectral width of the bandgap. The increase in 

pitch also increases the core size reducing waveguide 

dispersion. These effects reduce the guided mode’s overlap 

with the silica, reducing the Kerr nonlinear response (Fig. 1b). 

In a fiber the Kerr nonlinear response is often characterized 

using the nonlinear coefficient  which in this paper is defined 

as (2) [4]. 
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where n2 and Aeff, are calculated using the method described 

in [11], and k0 is the free space wavevector.  

 

Changing the pitch from 5.5μm to 3.5μm (whilst keeping 

the high-frequency edge of the bandgap fixed) can increase the 

nonlinearity by as much as 4 times. However, this change in 

pitch also increases the dispersion by changing the dispersion 

slope. For example, 10nm away from the zero dispersion 

wavelength (ZDW) the dispersion is increased by a factor of 4. 

Hence, at this wavelength there would be no change in the 

soliton energy.  

Therefore control of not only the nonlinearity but also of the 

dispersion is necessary for the creation of low energy solitons. 

A major cause of increased dispersion in HC-PCF is the core 

mode coupling to surface modes. As these surface modes are 

strongly peaked in the glass they are dispersive: they anti-

cross with the core mode and strongly increase its dispersion.  

Surface modes can be thought of as arising due to an 

“imperfect termination” of the cladding around the core, and 

to reduce their impact, care has to be taken in choosing core 

geometries. For clarity the core wall thickness of the modeled 

fibers in Fig. 1 was chosen such that the effects of surface 

modes were reduced across much of the bandgap [9], [10]. 

 

B. Soliton Compression 

There are two techniques for compressing a soliton in a 

waveguide; adiabatic compression and soliton effect 

compression. In soliton effect compression a higher-order 

soliton is initiated in the waveguide. In the absence of Raman 

scattering and higher-order dispersion (e.g. dispersion slope), 

higher-order solitons oscillate between a shorter, spectrally 

broader pulse and a narrower, but longer pulse, with the 

oscillation taking place over a distance called the soliton 

length [4] 
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(3). 

 

Therefore, it is possible to compress a pulse simply by 

launching it as a higher-order soliton and ensuring that the 

pulse exits the fiber at the right point of the soliton length. As 

higher-order solitons are intrinsically unstable in the presence 

of higher-order dispersion and Raman gain, in reality they do 

not usually oscillate over several cycles. Therefore, the length 

of fiber used must be significantly less than the soliton length. 

Compression of this type in HC-PCF was first demonstrated 

by Ouzounov et al [12], who compressed a 120fs pulse to 50fs 

in 0.24m fiber. An empirical limit for this compression was 

proposed by Dianov et al [13] as τFWHM/τmin=4.1N. A 

disadvantage of soliton effect compression is that the 

compression is never perfect – there is always some radiation 

which is not compressed, and continues to disperse.
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Fig. 1.  The modeled dispersion (a) and nonlinearity (b) of 3 different 7-cell 
fibers designed such that the high frequency edge of their bandgaps occurs at 

the same wavelength. The pitches of these fibers are 3.5, 4.5 and 5.5μm (c). 

     

 

A different means of compressing a pulse is the adiabatic 

compression of a fundamental soliton. In adiabatic soliton 

compression the dispersion of the fiber is decreased slowly 

along its length. The effects of dispersion and SPM must 

balance for a soliton to remain in its fundamental form; and so 

a decrease in the value of dispersion results in an increase of 

bandwidth until SPM and dispersion become rebalanced. 

Therefore, a slow decrease in dispersion along a waveguide 

will result in a shorter pulse being created, according to 

equation (1). 

 In HC-PCF this decrease in dispersion at a fixed 

wavelength can be achieved by shifting the bandgap to longer 

wavelengths through up-tapering the outer diameter of the 

fiber such that it increases along its length. For this transition 

to be adiabatic, the change of dispersion must be slow relative 

to the soliton length. Hence, for a large compression ratio the 

taper length needs to be many times the soliton length. Of 

course as the pulse gets temporally shorter the soliton length 

gets shorter. Therefore, it should be possible to shorten the 

taper by having a nonlinear gradient which gets steeper 

towards the end of the taper where the pulse is shorter. 

However, Pelusi et al [14] suggest that this does not aid in 

shortening the taper greatly. Theoretically, the main advantage 

of adiabatic compression over soliton effect compression is 

that the all the energy of the input pulse is contained in the 

output pulse. However, due to fiber attenuation, third order 

dispersion and Raman scattering, this is not usually the case 

experimentally. It has been shown to be possible to suppress 

the Raman self frequency shift of a soliton in HC-PCF by 

filling it with a non-Raman-active gas such as Xenon [12].  

Adiabatic compression was first demonstrated in a HC-PCF 

taper by Gêrôme et al. They fabricated an 8m taper 

compressing 195fs pulses to less than 100fs at 800nm [15]. 

An obvious consideration is what are the limitations to 

compression using these techniques? Gorbach and Skryabin 

[16] state that in terms of pulse length there is a barrier 

imposed by Raman gain: if the bandwidth of the pulse gets 

large then it encloses the Raman gain peaks and much of the 

pulse is transformed into non-solitonic radiation. This will be 

more problematic in adiabatic compression due to the 

propagation distances involved. The Raman gain spectrum of 

air is centered at 2.6THz [17], [18] which is a fifth that of 

silica at 13THz. Hence, pulses in air with durations less than 

or close to 100fs suffer from strong losses of energy being 

coupled to non-solitonic radiation.  

Another limitation on the ultimate pulse length is third order 

dispersion [12]. Hence, the dispersion of the fiber needs to be 

as flat as possible for optimal compression. This also means 

that to demonstrate large compression ratios it is better to start 

with longer picosecond pulses, which is the case investigated 

here.  

 

III. EXPERIMENTAL RESULTS USING 3-CELL HC-PCF 

A.  Fiber Parameters 

Two 3-cell fibers are presented within this paper. The two 

fibers had virtually the same cladding structure, but the 

structure of the core and the cells surrounding the core 

differed. One had a large (10μm diameter) core that perturbed 

the surround structure greatly, and the other had a 6.5μm 

diameter core which perturbed the surrounding cladding by far 

less (Fig. 2). These core geometries were chosen as they 

suppressed the effects of surface mode anti-crossings near the 

centre of the bandgap. For comparison, we also show results 

from one of our state-of-the-art 7-cell fibers which has a core 

diameter of 16.7μm [9]. 

 The attenuation and dispersion of the 3-cell fibers was 

measured and is shown in Fig. 3. The dispersion was 

measured using a low coherence interferometric technique. 

The minimum attenuation of both of these fibers is less than 

that reported by Petrovich et al [8] (which was approximately 

200dB/km) although the bandwidth is also less in both cases. 

(c) 
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Fig. 2. A Scanning electron micrograph of a state-of-the-art 7-cell fiber (a), 

and an example modal field pattern measured for a wavelength at the center of 

the bandgap. Also presented are micrographs and modes for the two 3-cell 
fibers, with a 10μm core (b) and a 6.5μm core (c). 

 

For both 3-cell fibers, the dispersion and dispersion slope 

was found to be high across much of the bandgap with the 

larger 10μm core fiber having a relatively flat region at the 

centre of the bandgap (Fig. 3a). The increased dispersion in a 

3-cell HC-PCF arises due to the stronger confinement in a 

smaller core compared with the 7-cell fiber (or in fact a 19 cell 

fiber, which theoretically has even flatter dispersion). 

Modeling was done on a 3-cell fiber with the same core 

geometry as the 6.5μm fiber (Fig. 4), but with slightly 

different values of pitch, core size and air filling fraction. A 7-

cell fiber was also modeled with the same cladding for 

comparison. The respective core sizes were 10μm and 15μm. 

The cladding had hexagonal holes with rounded corners; a 

pitch of Λ=5μm, a strut thickness of 0.02Λ and a curvature at 

the corners of 0.41Λ. 

The nonlinear coefficient and dispersion D was evaluated 

across the bandgap for both cases (Fig. 5). Comparing the 

modeled 3-cell fiber and 7-cell fiber the nonlinear coefficient, 

, of the 3-cell is approximately 7 times greater. In the 7-cell 

fiber, 20% of the Kerr nonlinear response comes from silica. 

This silica contribution is 25 times greater in the 3-cell fiber. 

The remaining 80% of the Kerr nonlinear response of the 7-

cell fiber comes from air. This air contribution is twice as 

large in the 3-cell fiber. The dispersion of the 3-cell fiber is 

larger by a factor of 4 (10nm from the ZDW). Hence, the 

soliton energy at this wavelength is only decreased by a factor 

of approximately 2 between these two designs. These ratios 

will not hold true for all 3-cell fibers and 7-cell fibers as the 

properties of HC-PCF differ significantly with changes in 

pitch and air-filling fraction, for example. 

  
Fig. 3.  In (a), the measured attenuation and dispersion of the state of the art 7-

cell fiber, (b) the 10μm core fiber and (c) the 6.5μm core fiber. The zero 

dispersion wavelengths are 1502nm, 1465nm and 1490nm respectively. The 
dispersion curves were obtained by measuring the group delay as a function of 

wavelength. The points represent the two-point difference between adjacent 

measured points and the lines are the differential of a 6th order polynomial fit 
line. 

 

  
Fig. 4. A comparison of the modeled 3cell fiber structure (right half) to that of 
the fabricated 6.5um fiber (left half) the two halves are scaled to fit together; 

the pitches differ. 

(b) 

(c) 

(a) 

 

(a) 
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Fig. 5. In (a), the calculated  and dispersion for the modeled 3-cell fiber in 
Fig. 4, and (b) the modeled 7-cell. 

 

B. Experiment 

For these experiments the laser system used was a 

femtosecond optical parametric amplifier (OPA). This was 

pumped by a regeneratively amplified Ti-Sapphire laser 

system. The amplifier delivered 200fs pulses centered at 

802nm and with energies up to 5µJ at a repetition rate of 

125kHz. The OPA allowed the generation of 90fs pulses that 

could be tuned across the entire bandgap of both 3-cell fibers. 

The maximum pulse energy obtainable at 1500nm was 275nJ. 

For the 10μm core diameter 3-cell fiber some spectral 

splitting was seen for launching the pulse at the ZDW [19], 

but nothing was observed away from this wavelength. Using 

an autocorrelator, and the 6.5μm core diameter fiber, pulses 

were observed through the 5m of fiber. Light was launched 

into the fiber with a maximum coupling efficiency of 30%, 

well below the 50% coupling efficiency which was typically 

obtained using the 7-cell fiber. We believe this to be due to the 

reduced overlap of a Gaussian beam with the guided mode of 

the 3 cell fiber.  

For both 3-cell fibers the position of spectral splitting at their 

respective ZDW’s agreed with the values from the low 

coherence interferometer measurements. Fig. 6 shows this 

agreement in ZDW for the 6.5μm 3-cell fiber putting it at 

1490nm.  

C. Results  

Launching pulses at 1500nm into the 5m long 6.5μm core 

fiber, a self frequency shift was observed with increasing 

pulse energy (Fig. 7). Launching 275nJ pulses at the fiber 

input face (the coupled energy was less due to the estimated 

30% coupling efficiency), an output energy of 80nJ was 

measured and a 435fs pulse was observed on an 

autocorrelator. This is much shorter than the multi-picosecond 

pulse expected for linear propagation given that the dispersion 

is approximately 100fs/nm/m at 1500nm, and that an output 

spectral width of 5nm was seen after 5m. The input pulse 

spectrum was of a similar shape to that in Fig. 6. 

 

 
Fig. 6. In grey the spectral splitting observed launching at the 5m fiber an 

80nJ input pulse (not the coupled energy) shown in dashed black. Both curves 
are arbitrary and individually normalized. In black, a part of the measured 

dispersion taken from Fig. 3c. 

 

 
Fig. 7. In (a), the spectral response through 5m of the 6.5μm fiber for different 

output pulse energies and (b), autocorrelations of the input pulse in black 

(90fs) and the output pulse in grey (435fs), for a measurement of 80nJ at the 
output. 

 
Fig. 8. The modeled spectral response of 5m of 6.5μm 3-cell fiber for different 

input energies. The input pulse was a 90fs sech2 shaped pulse centered at 

1492nm. 
 

 

(a) 
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In an effort to reproduce the results in Fig. 7a modeling was 

done using a split step Fourier method, (equation 1 from [16]); 

fiber losses were not included, a coupling efficiency of 100% 

was assumed and higher-order dispersion terms were taken 

from a polynomial fit to data in Fig. 3c. Observing Fig. 5a the 

relative nonlinear contributions of air and glass were taken to 

be in a 1:3 ratio, gamma was assumed to be 0.0138 (W km)
-1 

(slightly higher than the modeled value). Good agreement was 

found with the experimental results, (Fig. 8). The computed 

output pulse length was 330fs for the input of a 90fs, 80nJ 

input pulse. 

We conclude that the potential benefit of using the 3-cell 

design over the 7-cell design for low energy solitons which is 

associated with the increase in nonlinearity is negated by 

increased dispersion.  The magnitude of the group-velocity 

dispersion across the bandgap is large because of the 

dispersion slope. The fabricated 7-cell in Fig. 3 had a 

dispersion slope at the centre of the bandgap of 0.3fs/nm
2
/m 

compared to over 2fs/nm
2
/km for the 6.5μm 3-cell. The 

modeled 7-cell and 3-cell fibers have dispersion slopes of 

0.2fs/nm
2
/m and 1.6fs/nm

2
/m respectively. 

Placing the guiding core of the 3-cell in the centre of the 

cladding structure rather than off-centre as in our designs 

would have made the stacking process more difficult, as the 

outer ring of cladding holes would be less symmetric. 

However, a central core might have enabled the fabrication of 

3-cell fibers with higher air filling fractions giving broader 

low-loss regions and hence reduced dispersion slope (Fig. 1). 

The asymmetry of the off-center core makes it harder to 

increase the air fraction without distorting the fiber structure. 

 

IV. TAPER COMPRESSION 

A. Tapered fiber 

A tapered HC-PCF was made during the draw of the 

standard 7-cell HC-PCF shown in Fig. 9. Also shown, is an 

attenuation measurement of the uniform fiber. It has an 

attenuation of approximately 125dB/km at 800nm giving the 

35m taper an estimated loss of 4dB. This loss sets the limit on 

the maximum length of the taper, as any loss has to be 

compensated by a decrease in dispersion, or it will result in an 

increase in output pulse length (1). 

 

 
Fig. 9. The  attenuation measurement of a fiber with a constant outer diameter 
created at the same time as the taper, an SEM is inset. 

 

 

  The taper was fabricated by varying the capstan speed 

during the drawing process. Rather than fabricating a taper 

with a diameter change over only the desired 35m, a long 

taper was fabricated and the required 35m length was carefully 

selected. This was done by measuring the transmission of 

lengths cut off the ends of the taper, and a measurement was 

performed on two 0.5m lengths to confirm the dispersion at 

either end of the taper using a low coherence interferometric 

technique (Fig. 10). The method is described in detail in [15].  

 

 
Fig. 10. The measured dispersion of both ends of the taper (black is input, 

grey is output). The solid and dotted curves correspond to different 

polarization states; the solid curves correspond to the polarization used in this 
experiment. 

 

At 802nm wavelength, the dispersion is 150fs/nm/m at the 

fiber input, and at the output the ZDW is 830nm. The output 

dispersion was minimized at 830nm rather than 802nm as the 

effect of the soliton self-frequency shift is to increase the 

wavelength of the propagating soliton [20], [21]. 

B. Experiment 

The laser system used was a regeneratively amplified mode-

locked Ti-Sapphire laser, which gave transform limited 200fs 

pulses centered at 802nm with a repetition rate of 250KHz and 

up to 4.4μJ pulse energy. These pulses were then processed 

using a Fourier plane pulse shaper [22], where the spectral 

bandwidth was reduced using an adjustable opaque slit placed 

in the Fourier plane, temporally broadening the pulse. This 

simple filtering keeps the time bandwidth product small, while 

losing much of the input power. Two pulse lengths were 

chosen for the experiments; 1.2 and 2.5ps.  

These pulses were coupled to the fiber with an estimated 

efficiency of 65%, and the polarization was rotated until 

optimal compression was observed: corresponding to the black 

dispersion curves in Fig. 10. 

C. Results 

For both input pulse lengths, the input energy was increased 

whilst observing the output pulse length until optimal 

compression was achieved. Fig. 11 shows the spectral and 

temporal changes for separately launching 80nJ, 1.2ps and 

55nJ 2.5ps pulses into the taper. For these 2 different input 

pulses deconvolved output pulse lengths of 175 and 215fs 

respectively were recorded on an autocorrelator based on two 

photon absorption in a LED [23].  

(a) 
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Fig. 11. (a)&(b). Input and output autocorrelations for the 1.2 and 2.5ps input 

pulses respectively, for output pulse energies of 19.4 and 13nJ. (c)&(d) The 

respective corresponding spectra for these autocorrelations. For all cases grey 
is the input pulse and black is the output pulse. 

 

Observing the output pulses on a GRENOUILLE, (Swamp 

Optics) confirmed the presence of compressed pulses at 812 

and 820nm respectively (Fig. 12) hence it is believed that both 

these spectral peaks correspond to the soliton-effect 

compressed pulse. The GRENOUILLE computed pulse 

lengths of 138 and 265fs respectively for these traces. 

Spectrally from Fig. 11c and Fig. 11d both peaks are broader 

than the input pulse, both having approximately 4.3nm 

bandwidth and hence setting a lower bound for the pulse 

length of 155fs at this wavelength.  

The output traces for the 1.2ps pulse from both the 

GRENOUILLE and the autocorrelator are clean. However for 

the 2.5ps input pulse it is evident that the output pulse sits on a 

pedestal, which can be expected from study of the 

corresponding spectrum. The oscillations in the input pulse 

spectra, Fig. 11c and Fig. 11d, are an effect of the spectral 

filtration method used. 

 

 
Fig. 12, (a) The output trace on a GRENOUILLE for the 1.2ps input pulse, the 

calculated pulse length was 138fs. Visible is the spectral peak at 812nm from 

Fig. 11c. (b) The output trace for the 2.5ps input pulse, the calculated pulse 

length was 265fs. Visible are the spectral peaks at 804 and 820nm from Fig. 

11d. Note: Because the GRENOUILLE uses second harmonic generation to 
measure pulse lengths, the wavelength scale should be doubled to return real 

values of wavelength. 

 

The large compression ratios – 7 times and 12 times for the 

1.2 and 2.5ps input pulses respectively – in such a short taper 

are impressive. In the case of the 1.2ps input pulse we estimate 

based on the spectrum that roughly 50% of the output energy 

is in the compressed pulse. For this case, the input soliton 

length is 14m, and this length decreases as the pulse is 

compressed, therefore we expect adiabatic compression to be 

significant.  For the 2.5ps pulse the input soliton length (60m) 

is longer than the entire taper, and spectrally it is obvious that 

less of the input pulse has been converted into the compressed 

pulse (around 37%).  Based on analysis of the spectrum we 

determine the compressed output energies as 9.4nJ and 5nJ 

respectively. Assuming a coupling efficiency of 60%, the 

input pulse energies in the two cases are 47nJ (for the 1.2ps 

pulses) and 33nJ (for the 2.5ps pulses.) Based on the fiber 

parameters, this allows us to estimate the input soliton order as 

N=2.4 for the 1.2ps case and N=2.8 for the 2.5ps case.  As in 

previous work with conventional [14] and solid-core photonic 

crystal [24] fibers, optimum compression with short tapers is 

found to be in the regime of somewhat above the fundamental 

soliton energy, although the soliton numbers here are slightly 

higher than in previous work. Table I compares the results 

from this paper to previously referenced experimental HC-

PCF papers in soliton compression. 
 

 

(a) 

(b) 
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TABLE I 

A comparison of different soliton compression papers in HC-PCF. 

Paper 

Delivery of 

sub-100fs 
pulses through 

8m of hollow 

core fiber 
using soliton 

compression 

 
F.Gérôme et al 

[15] 

Soliton pulse 

compression 
in photonic 

bandgap 

fibers 
 

D. G. 

Ouzounov  
et al  

[12] 

This 
work; 

1.2ps 

input 
pulse 

This 
work; 

2.5ps 

input 
pulse 

 
Compression  

mechanism 

 

Adiabatic Soliton effect Both Both 

Taper 
 

Yes No Yes Yes 

Compression 

Ratio 
 

x2 x2 x7 x12 

Fiber length 

 
8m 0.24m 35m 35m 

Input soliton 
length 

 

0.7m 0.6m 14m 60m 

Estimated 

input soliton 
number 

 

1.6 3.5 2.4 2.8 

 

The dispersion is normal at the output of the taper for the 

1.2ps input pulse. When the taper output was cut back by 5m 

the measured output pulse length increased. This may be due 

to the difficulty of accurate non-destructive measurement of 

the dispersion profiles in the rapidly tapered fiber.  

V.  CONCLUSION 

We have demonstrated nonlinear propagation in a 3-cell fiber, 

where a reduced core area increases the nonlinear coefficient 

γ. However, this also increases the dispersion, and the overall 

reduction in soliton energy is just a factor of approximately 2. 

It may be possible to improve this performance by fabricating 

fibers with a central hollow core, rather than off-center as in 

this work. We also demonstrate soliton effect compression in a 

35m taper using picosecond input pulses achieving over an 

order of magnitude temporal compression. 
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