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Using an asymptotic expansion of Maxwell equations and boundary conditions, we derive an amplitude equation 
for nonlinear TM modes in planar metal and dielectric waveguides. Our approach reveals that the physics of the 
significant enhancement of the nonlinear response in subwavelength waveguides with respect to their weakly 
guiding counterparts is hidden in surface effects. The corresponding enhancement factor is determined by the 
products of the surface discontinuities of the transverse field components and of the surface values of the long­
itudinal components of the electric field summed over all the interfaces. We present an insightful expression for 
the enhancement factor induced by the surface plasmon polaritons and discuss numerical and analytical results 
for the subwavelength dielectric and metal slot waveguides. Our theory also includes diffraction effects along the 
unbound direction in these waveguides. © 2010 Optical Society of America 

OCIS codes: 190.4390, 240.4350, 240.6680, 130.4310, 130.2790, 190.4350. 

1. INTRODUCTION AND RATIONALE To address this outstanding issue, we develop a rigorous 

Waveguiding on a subwavelength scale has become a practical and at the same time transparent asymptotic theory, which 

reality with silicon slot waveguides providing a promising en- reveals that enhancement of the nonlinear response of TM 

vironment for nonlinear frequency conversion and ultrafast modes in planar subwavelength waveguides happens exclu­

processing [1,2]. Metal and dielectric slot waveguides and sur- sively due to surface effects. Namely, the enhancement factor 

face plasmons are also actively researched for nonlinear appli-	 is determined by the products of the surface discontinuities of 

cations and soliton effects; see, e.g., [3–9]. Submicrometer core	 the transverse field components and of the surface values of 

optical fibers [10–12] have also been developed. The recent	 the longitudinal components of the electric field summed over 

work carried out with the latter [12] has demonstrated that	
all the interfaces. If either is disregarded, then no enhance­
ment happens, and the results of the older theories are recov­

scaling of the nonlinear fiber parameter in the subwavelength 
ered. Thus, the longitudinal component of is important 

geometry with the square of the projection of the Poynting vec­
primarily through its surface value and not through its inte­
grated average contribution. tor on the propagation direction provides much better fit with 

the experimental measurements than the previous theories re­
j2dSj2, where dS is the two-

R 
∞ Elying on the scalingwith the j j ~


dimensional differential area in the plane perpendicular to the

−∞ 2. ASYMPTOTIC EXPANSION FOR


MAXWELL EQUATIONS AND BOUNDARY
Ewaveguide axis, and ~


be traced back to the scalar wave equation [13], and its poor

is the electric field. The older scaling can CONDITIONS


performance in the regime, when the guided mode strongly de- We consider a planar waveguide, where x is the direction per­

viates from being a pure transverse wave, is not surprising. pendicular to the interfaces, z is the propagation direction, and 

Optical guidance at the planar metal surfaces and in planar y is the unbound direction, so that light can diffract along y. 

dielectric slot waveguides intrinsically depends on the fact that	 Evolution of the monochromatic field obeys time-independent 

=ϵ0E~ ~ ∇ × ~ ~D
tric field [4,5,7,8,14]. Nevertheless, existing theories deriving a conditions at the interfaces. Here the electric field and 

Maxwell equations subject to boundaryTM modes have a nonzero longitudinal component of the elec­ ∇ × ¼ 

e−iωt þ c:c:nonlinear parameter of plasmonic waveguides either utilize the displacement vectors are defined as 1 ~E
~D e−iωt þ c:c:, and ϵ0 is the vacuum susceptibility. If ϵðxÞ is 

the dielectric constant varying sharply at the interfaces, then 

and2 
older scaling [4,7] suitable only for quasi-transverse fields or 1 

rely on cumbersome calculations [15] prohibiting qualitative 2 

understanding of the physical reasons inducing changes in 
ϵ ϵ ~ ~~~ N¼ ð0 N
E
D


and two-dimensional (2-D) silicon waveguides and giving the ment. The coordinates x, y, and z are normalized to the inverse 

scaling of the nonlinear response with the projection of the wavenumber k ¼ 2π=λ, where λ is the vacuum wavelength. We 

Poynting vector utilize the modal expansion and reciprocity seek a solution corresponding to a nondegenerate guided 

Þ, where is the nonlinear part of the displace­þthe nonlinear response. Novel approaches developed for fibers 

~Eðx; y; zÞeiβz, where β is the propagation Emode in the form ~

constant. We substitute 

¼theorem [16–19]. The new scaling compares favorably with 
the experimental measurements [12], but still sheds little light ~Neiβz~N þ

ðxÞ is the leading term, and ϵbðxÞ is a possible 
and assume that ϵ ¼ ϵa¼ 

ϵb, where ϵaon the physics of the significantly enhanced nonlinear re­
sponse in subwavelength geometries [1,12]. correction, accounting, e.g., for linear absorption. Nonzero 

0740-3224/11/010109-06$15.00/0 © 2011 Optical Society of America 
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I1=2ψ . The normalization factor I is chosen below in a way that 
jψ j2 is the power density (measured in watts per meter) car­
ried in the z direction. Calculating the z component of the 
Poynting vector Z 

Pz ¼ 4
1 
k −∞ 

þ∞ 
ðAxHy 

� þ Ax
�HyÞdx ¼ Ijψ j2

2
ϵ
β
0c

k
Q; ð8Þ 

Z 
Q ¼

þ∞ 
ϵajexj2dx; ð9Þ 

−∞ 

where Hy ¼ ϵaϵ0c=ðβkÞI1=2ψex, we find I ¼ 2βk=ðϵ0cQÞ. jψ j2 is 
measured in units of the power density and not of the power 
itself [13], since integration along the unbound direction y is 
not performed. 

The BVP in the OðsÞ order is 

∂2 
xxC − ðβ2 − ϵaÞC ¼ 0; Ey: Δj ½C� ¼ 0; 

ð10Þ 
Hz: Δj ½∂xC� ¼ I1=2∂yψΔj ½ex�: 

The right-hand side of the Hz boundary condition is nontrivial 
due to simultaneously nonzero diffraction and discontinuities 
of ex; if either is disregarded, then C ¼ 0. In general, 
C ¼ I1=2eyðxÞ∂yψðz; yÞ, where eyðxÞ is bound ðβ2 > limjxj→∞ 

ϵaÞ and continuous in x and solves the above BVP with the 
Hz condition replaced by Δj ½∂xey� ¼ Δj ½ex�. 

The BVP found in the Oðs3=2Þ order is 

components of the electric field of TM modes are Ex (perpen­
dicular to the interfaces) and Ez (along the propagation direc­
tion). When diffraction along y direction is accounted for, the 
TM modes are transformed into quasi-TM ones, so that Ey is 
also nonzero but remains relatively small. Generic boundary 
conditions at the relevant interfaces are such that the tangen­

tial components of E~ and the normal components of the dis­
~placement ϵE~ þN and all components of the magnetic field 

~ e−iβz ~ ~H ¼ ðλcϵ0=i2πÞ ∇ × Eeiβz are continuous: 

Ex: Δj ½ϵEx þ Nx� ¼ 0; Ey: Δj ½Ey� ¼ 0; 

Hy: Δj ½∂xEz − e−iβz∂zðExe
iβzÞ� ¼ 0; 

Ez: Δj ½Ez� ¼ 0; Hz: Δj ½∂xEy − ∂yEx� ¼ 0; ð1Þ 

where the operator Δj½f � acting on a function f ðxÞ is defined as 

Δj ½f � ¼ limðf ðxj − δÞ − f ðxj þ δÞÞ: ð2Þ 
δ→0 

Here xj are the interface coordinates. Boundary conditions on 
Hx and Hz are not independent from the other ones and can be 
eliminated, but it is technically convenient to retain the Hz 

condition explicitly. 
For a typical isotropic nonlinearity 

N~ ðEx; Ey; EzÞ ¼  
1 χ3 jE~ j2E~ þ 

1 ðE~ · E~ ÞE~ � 
; ð3Þ

2 2 
L̂B~ ¼ I1=2 ~J; Ez: Δ½Bz� ¼ 0; 

where χ3 is the nonlinear susceptibility. 
We assume that the exponential factor varies in z much fas­

~ ~ ~ter than E itself, i.e., j∂zEj ≪ βjEj. Further, it is assumed that 
~ ~the left-hand side of the above inequality, ϵb E, and N all have 

the same order of smallness Oðs3=2Þ, where s ≪ 1 is a dummy pffiffiffiffiffi 
parameter. Also, ϵb ∼ OðsÞ, ∂z ∼ OðsÞ, χ3Ex;z ∼ Oðs1=2Þ, 

~pffiffiffiffiχ3 
ffi
Ey ∼ OðsÞ, and ∂y ∼ Oðs1=2Þ. For E, we use the following 

ansatz: 

Ex ¼ Axðψ ; xÞ þ Bxðψ ; xÞ þ Oðs5=2Þ; 
Ez ¼ Azðψ ; xÞ þ Bzðψ ; xÞ þ Oðs5=2Þ; 
Ey ¼ Cðψ ; xÞ þ Oðs2Þ; ψ ¼ ψðz; yÞ; ð4Þ 

where Ax;z ∼ Oðs1=2Þ, Bx;z ∼ Oðs3=2Þ, and C ∼ OðsÞ. All A, Band 
C do not depend on z and y explicitly, but only by means of the 
slowly varying function ψðz; yÞ. Collecting all the Oðs1=2Þ 
terms, we find the following boundary value problem (BVP): −∞

Ex: Δj ½ϵaBx� ¼ −Δj ½ϵbAx� − I1=2ψ jψ j2Δj ½nx�; ð11Þ 

~where B ¼ ðBx; BzÞT and J~ ¼ ðJx; JzÞT is the displacement in­
duced by the perturbations: ¼ ∂zψð2iβex − ∂xezÞ þ ∂2 ψ 
ðex − ∂xeyÞ þ ψϵbex þ ψ jψ j2nx, Jz ¼ −∂zψ∂xex þ ψϵbez þ ψ jψ j2 

nz. For nonlinearity as in Eq. (3), we have nx;z≡ 
INx;zðex; 0; ezÞ. Deriving an independent BVP for ez and com­
paring it to the BVP for ey, one can show that ez ¼ iβey. This 
identity couples the diffraction-induced ey and the longitudi­
nal field component and makes it possible to eliminate ey from 
the following derivations. 

Jx yy

3. NONLINEAR SCHRÖDINGER EQUATION 
AND SURFACE EFFECTS 
Projecting Eq. (11) onto the linear TM mode, i.e., demanding R R 

B~Þdx ¼ I1=2 JÞdx, L̂∞ ð~e� · ∞ ð~e� · ~ derive the amplitude we
−∞

equation for ψ and guarantee absence of secular terms in 
the solution for B~ . An important aspect of the projection pro­L̂ ~A ¼ 0; Ex: Δj½ϵaAx� ¼ 0; Ez: Δj ½Az� ¼ 0; ð5Þ R R R R P
cedure is that we take ∞ ¼ x1 þ N−1 xjþ1 þ ∞ , apply the 

−∞ −∞ j¼1 xj xN 

integration by parts and use boundary conditions to evaluate where � � � � the off-integral terms. Importantly, not only the right-hand 
Ax β2 − ϵa iβ∂xA~ ≡ ; L̂≡ : ð6Þ side part of the projection condition, as in the perturbation 
Az iβ∂x −∂2 − ϵaxx theory with no midpoint boundaries, but also the left-hand 

For Imϵa ¼ 0, the BVP (5) is self-adjoint. one yields a nonzero outcome: 
From possible solutions of this BVP, we select a nonde- ∞ 

Z 

generate bound mode ~A ¼ I1=2ψðz; yÞ~e, where ðe� ·~ L̂~BÞdx ¼ −ηPI1=2ðiβ∂zψÞ; ð12Þ 

is the mode profile, L̂

−∞ Z ZeðxÞ ¼ ð ; ezÞ ð7Þ~ ex
T 

∞ ∞ 
ð~ · J~Þdx ¼ ið2 þ ηÞβP∂zψ þ Pð1 þ ηÞ∂2 ψ þ ψ ϵbje~j2dxe� yy

~ −∞ −∞e ¼ 0, and ψ is an undetermined func- Z 
tion, jψ j ∼ Oðs1=2Þ. Without any loss of generality, ~e can be as- þψ jψ j2 

∞ ð xnx þ ez
�nzÞdx: ð13Þe� 

sumed dimensionless, so that the field units are carried by −∞ 
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Here 

X1η ¼ ðiezðxjÞÞ�Δj ½ex�; ð14ÞβP 
j 

Z 
∞ 

P ¼ j~ej2dx: ð15Þ 
−∞ 

The resulting NLS equation for ψ is 

∂ψ 1 ∂2ψ
i 
∂ðz=kÞ þ 

2βk ∂ðy=kÞ2 þ αψ þ ϒjψ j2ψ ¼ 0; ð16Þ 

where the nonlinear parameter ϒ can be expressed as 

ϒ ¼ gγ; ð17Þ 

Z
2k2 ∞ 1γ ¼ 

3β2P2 
−∞ 

ϵan2 j~ej4 þ 
2 
j~e2j2 dx: ð18Þ 

Here we used χ3 ¼ ð4=3Þn2ϵ0ϵac, where n2 is the Kerr coeffi­
cient. Parameter γ is defined to be similar to the one derived in 
the approaches dating back to the use of scalar wave equation 
[13], with equivalent expressions presented in [4,7]. Impor­
tantly, the nonlinear coefficient ϒ differs from γ by the 
factor g: 

1 
g ¼ ; ð19Þ ð1 þ ηÞ2 

which we call the surface-induced nonlinearity enhance­
ment factor. The units of n2 are m2=W and the units of γ 
and ϒ in our planar geometry are 1=W. 

The enhancement factor g significantly deviates from g ¼ 1, 
providing η significantly deviates from zero. The value of η 
[see Eq. (14)] is simultaneously determined by the longitudinal 
components of the field calculated exactly at the interfaces, 
ezðxj Þ, and by the jumps experienced by the transverse com­

~ponent, Δj ½ex�. Using ∂xϵaex ¼ −iβϵaez (divϵaE ¼ 0 condition 
for linear TM modes), we conclude that the phase of ez can 
only be �π=2, and hence η is real. Calculating η for different 
metallic and dielectric waveguides (see Section 5 and Appen­
dix A), we have found that −1 < η < 0. This implies g >  1 and 
hence field discontinuities at the surfaces and the surface va­
lues of the longitudinal field lead to the enhancement of the 
nonlinear response of the TM-guided modes. 

The last and least important coefficient in Eq. (16) for our 
present purposes is 

pffiffiffi Z 
α ¼ 

k 
2Pβ 

g

−∞

∞ 
ϵbje~j2dx: ð20Þ 

The physical meaning of α is determined by ϵb, which is the 
perturbation of the dielectric constant. α ∼ 

p
g 
ffiffiffi
, and hence it is 

enhanced as well by the surface effects. 

4. COMPARISON WITH PREVIOUS 
APPROACHES 
In the weakly guiding limit of quasi-transverse modes ez → 0, 
β2 

→ ϵa, and carrying n2 through the integral, one finds 
γ ≃ n2k=Lx, where 
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R 2 
jexj2dðx=kÞ 

Lx ¼ R ð21Þ jexj4dðx=kÞ 

is the characteristic plasmon length along the x direction. The 
latter is the exact one-dimensional (1-D) analog of the γ given 
in [13]. 

Manipulating linear Maxwell equations and using the inte­
gration by parts, one can prove the auxiliary identity g1=2Q ¼ R 

∞β2P and show that ϒ ¼ 2β
2k2 ϵan2½j~ej4 þ 1 j~e2j2�dx. Notably, 

3Q2 −∞ 2 
the latter expression does not contain g, which has been ab­
sorbed by Q. In its turn, Q ∼ Pz, and thus our expression for ϒ 
matches the nonlinear coefficients previously derived via the 
modal expansion and application of the reciprocity identity in, 
e.g., [16–19] for 2-D waveguides. Our results do not merely 
confirm the above ones for a particular case of TM modes 
in planar waveguides but reveal an insightful expression for 
the dimensionless factor g [see Eqs. (14) and (19)], making 
all the difference between the older and newer theories 
and thereby uncovering the pure surface origin of the nonli­
nearity enhancement. Applications of the reciprocity-based 
approach in quasi-1-D geometry, when not only nonlinearity 
but also diffraction should be considered as a perturbation, 
remain unknown to us, and therefore direct comparison is 
not possible. The propagation operator in Eq. (16) is  i∂zþ 

2
1 
βk ∂

2 , with the diffraction coefficient 1=ð2βkÞ (βk is the phy­yy

sical propagation constant). Note that, in some other theories 
treating diffraction of surface TM waves (see, e.g., [7]), the 
propagation operator contains additional coefficients making 
the diffraction rate different from 1=ð2βkÞ. In this respect, the 
linear part of our results is analogous to [20]. 

5. SURFACE-INDUCED NONLINEARITY 
ENHANCEMENT IN BASIC WAVEGUIDE 
GEOMETRIES 
To evaluate the surface-induced nonlinearity enhancement 
factor g, we have considered several basic waveguide geome­
tries [see Figs. 1(d)–1(f)]. While below we discuss numerical 
[as shown in Figs. 1(a)–1(c)] and simplest analytical results 
for g, we also present the analytical field profiles and expres­
sions for η used to calculate g in Appendix A. 

First is the waveguide of width w (dielectric constant ϵw) 
embedded into the cladding material with dielectric constant 
ϵd < ϵw[see Figs. 1(a) and 1(d)]. Let us remind that all the dis­
tances are scaled to 2π=λ. We find that, in this case, g tends to 
1 in both limits w → ∞ and w → 0 and has a well-pronounced 
maximum for the waveguide width of the order of wavelength 
w ∼ 1, thus implying resonant nonlinear response of the di­
electric waveguides [see Fig. 1(a)]. In a very realistic case 
of silicon surrounded by air, g rises to ≃4. 

Placing two identical dielectric waveguides close together 
creates the guidance of the symmetric ðexðxÞ ¼  exð−xÞÞ TM 
mode inside the low-index slot [see Figs. 1(b) and 1(e)]. Chan­
ging the slot width d, we found that g tends to the correspond­
ing values for the single waveguides of width w and 2w in the 
corresponding limits d → ∞ and d → 0. Location of the max­
imum of g also varies with w, but most typically is found for 
practically accessible d ≃ 0:1 [see Fig. 1(b)]. Figure 2(a) 
shows a comparison of γ and ϒ calculated as the function 
of the slot width. To express γ and ϒ in the units of 1=W=m, 
familiar for slot waveguides with a 2-D cross section (see, e.g., 
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in [1]), we divided them by Ly ¼ 100 nm, which is the charac­
teristic length scale along the y coordinate. We have chosen 
n2 to be the same inside the slot and in dielectric stripe to 
illustrate the pure geometrical impact on the nonlinearity 
enhancement. 

The other slot waveguide we are considering consists of the 
two metal ðϵm < 0Þ interfaces separated by the slot of width d 
filled with the dielectric ðϵd > 0Þ [see Fig. 1(f)]. For d ≫ 1, we  
deal with almost independent surface plasmon polaritons 
(SPPs) at every interface. In this case, g can be calculated 
in an elegant form (while in the other cases the dispersion 
law for β remains unresolved explicitly; see Appendix A for 
details): 

m
gspp ¼

ðϵ2 
d þ ϵ2 Þ2 

ð22Þ ðϵd þ ϵmÞ4 

and is clearly far from 1. gspp tends to infinity very rapidly 
when the contrast parameter ϵd=jϵmj tends to 1 (plasmon re­
sonance), which is the cutoff condition for SPPs to exist at the 
single interface. In this limit, both phase and group velocity of 
the plasmon become zero, so that new orders of smallness 
have to be introduced in our asymptotic procedure, which 
is likely to result in the amplitude equation different from 
the one derived above. Nonlinear parameter ϒ for a plasmon 
also can be calculated explicitly (see Appendix A) and is given 
by 

ϒspp ¼ 
2k2ϵ

3 
dn2 ϵm 

2 

2 1 þ
2
1 ϵm þ ϵd 

2
: ð23Þ ðϵd þ ϵmÞ ϵd − ϵm 

Note, that the divergence of ϒspp for ϵd=jϵmj → 1 is weaker 
than the one of gspp. 

Fig. 1. (Color online) (a)–(c) Surface-induced nonlinearity enhance­
ment factor g for three different waveguide geometries. The corre­
sponding waveguides and electric field profiles are shown in (d)–(f). 
(a), (d) Single dielectric waveguide of the width w. (b), (e) Dielectric 
slot waveguide, i.e., two dielectric waveguides separated by the slot 
width d. (c), (f) Metal slot waveguide, i.e., two metal interfaces sepa­
rated by the slot width d. All other notations and features are explained 
in the text. 

Skryabin et al. 

Fig. 2. Comparison between γ=Ly (dashed curves) and the surface-
enhanced ϒ=Ly (solid curves) nonlinear parameters for the (a) silicon 
and (b) metal slot waveguides with the polymer-filled slot. n2 for si­
licon and polymer are assumed to be the same 4 · 10−18 m2=W, while 
the dielectric constants are ϵw ¼ 12 and ϵd ¼ 3:2, respectively. 
w ¼ 0:7, λ ¼ 1:5 μm, and Ly ¼ 100 nm. In (b), the metal is assumed 
linear and ϵm ¼ −25, ϵd ¼ 4, λ ¼ 0:8 μm. 

In the metal slot waveguides, the surface enhancement g is 
easily getting very significant; even for moderate contrast 
ϵd=jϵmj ¼ 0:1–0:5 we have g ≃ 20–50, while close to the plas­
mon resonance it shoots to the infinity. Note that, in the metal 
slot waveguides, the enhancement factor rises sharply as the 
slot width tends to zero (g ∼ 1=d2, as can be derived using η gi­
ven in Appendix A), while in the dielectric slot g drops after 
reaching themaximumfor somesmall d [cf. Figs. 1(a) and1(c)]. 
Behavior of the nonlinear parameters ϒ and γ is also different. 
In thedielectric slot, ϒ and γ remainbound for d → 0 and d → ∞ 
[see Fig. 2(a)]. However, in the metal slot limd→0γ ¼ 0, while 
limd→0ϒ ¼ ∞ [see Fig. 2(b)]. Thus, in the narrow metal slots, 
the surface enhancement makes not only quantitative but also 
qualitative impact on nonlinear response. 

6. SUMMARY AND CONCLUSIONS 
In summary, using a new asymptotic approach, which rigor­
ously treats boundary conditions, we have derived a nonlinear 
amplitude equation for TM modes in planar optical wave­
guides. Our approach has enabled us to introduce and analyze 
the surface-induced nonlinearity enhancement factor g. This 
dimensionless factor attains values between 1 and 10 in di­
electric slot waveguides and shoots up toward infinity for sur­
face plasmons and in metallic subwavelength slots. The g 
factor provides a clear link between the traditional results for 
the nonlinear parameter in the weakly guiding regime [13] and 
the recent calculations and experimental measurements done 
for subwavelength structures [16–18]. More than this, it shows 
that the nonlinearity enhancement in the subwavelength re­
gime is attributed to the surface values of the longitudinal 
component of the electric field and to the interface jumps of 
the transverse component. For material constants and wave­
guide geometries leading to the divergent g factors, a new 
asymptotic theory should be developed, which will be re­
ported elsewhere. Though it still needs to be proved formally, 
one can expect that, for the 2-D TM (or quasi-TM) modes, the 
expression for g [see Eqs. (14) and (19)] should contain a con­
tour integral along the waveguide boundaries instead of the 
sum over all the interfaces. Mentioning quasi-TE modes, 
the significant surface effects are unlikely, due to continuity 
of the leading order electric field component across the inter­
face and smallness of the longitudinal field. 

APPENDIX A 
Below we present analytical expressions for the field profiles 
and parameter η determining the enhancement factor g [see 
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Eq. (19)] for the waveguides described in Section 4. We, how­
ever, have chosen to omit the rather cumbersome equations 
for the dielectric slot waveguide as the one shown in Fig. 1(e) 
and whose field structure has been reported in [14]. 

1. Dielectric Waveguide as in Fig. 1(d) 
The TM mode of this waveguide is 

� iβ 

ex	 i
κ
β 
cosðκxÞ jxj < w=2; ðA1Þ
sinðκw=2Þe−qðjxj−w=2Þ jxj > w=2;

q 

sinðκxÞ jxj < w=2; 
ez ¼ x	 ðA2Þ 

jxj sinðκw=2Þe−qðjxj−w=2Þ jxj > w=2; 

where κ2 ¼ ϵw − β2 , q2 ¼ β2 − ϵd, and β is defined from 
ϵdκ tanðκw=2Þ ¼ ϵwq. Then, we obtain 

ϵwη ¼ −2 − 1ϵd � � � � �� 

×	
β2 

− 1 þwκ β2 

þ 1 sin−1ðκwÞ þ  
ϵw β2 

þ 1 
−1 
: ðA3Þκ2 κ2	 ϵd q2 

η < 0 and η → 0 in both limits w → ∞ðκ → 0Þ and 
w → 0ðq → 0Þ, and hence there is an optimal waveguide width 
maximizing the surface enhancement [see Fig. 1(a)]. 

2. Surface Plasmon at a Metal–Dielectric Interface 
Field of the surface plasmon is given by 

1 1 
ex ¼ iβ e−qdxθðxÞ − eqmxθð−xÞ ; ðA4Þ 

qd qm 

ez ¼ e−qdxθðxÞ þ eqmxθð−xÞ; ðA5Þ 
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

where θðxÞ is the Heaviside function, qd;m ¼ β2 − ϵd;m, and 
β2 ¼ ϵmϵd=ðϵm þ ϵdÞ. Here d and m stand for dielectric and 
metal, respectively. Then, we obtain 

η ¼ − 
2ϵd=jϵmj 

; ðA6Þ 
1 þ ϵ2 

d=ϵ2 
m 

which is used to derive Eq. (22). An explicit form of γ for 
plasmons is 

2

2k2ϵdn2 
ð1 − ϵd=jϵmjÞ2 1 þ 2

1 
1
1
þ
−ϵ
ϵ
d

d

=

=

j
j
ϵ
ϵ
m

m 

j
j

γ ¼	 : ðA7Þ
3 ½1 þ ϵ2 

d=ϵ2 �2 
m

Thus, γ tends to zero as ϵd=jϵmj → 1, but at a rate weaker than 
the corresponding enhancement factor gspp [see Eq. (22)] 
tends to infinity, thereby yielding ϒ → ∞ [see Eq. (23)]. 

3. Metal Slot Waveguide as in Fig. 1(f) 
The metal slot mode with symmetry exðxÞ ¼ exð−xÞ and 
ezðxÞ ¼ −ezð−xÞ is given by 
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ex ¼ 
− 
iβ 
q

iβ 
d 
coshðqdxÞ 

ðjxj−d=2Þ
jxj < d=2; ðA8Þ 

sinhðqdd=2Þe−qm jxj > d=2;
qm 

sinhðqdxÞ jxj < d=2; 
ez ¼

j
x
xj sinhðqdd=2Þe−qm ðjxj−d=2Þ jxj > d=2; ðA9Þ 

where qd;m are as above, and β is found from 
jϵmjqd tanhðqdd=2Þ ¼ ϵdqm. η in this case is given by 

ϵdη ¼ −2 1 − ϵm � � � � �� 

× 
q

β
2

2 

þ 1 þ dqd 
q

β
2

2 

− 1 sinh−1ðqddÞ − 
ϵd

q

β
2

2 

þ 1 
−1 
: 

d d mϵm 

ðA10Þ 
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