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Parametric instabilities of microcavity polaritons in a periodic potential

A. V. Gorbach and D. V. Skryabin
Centre for Photonics and Photonic Materials, Department of Physics,

University of Bath, Bath BA27AY, United Kingdom

We analyze parametric instabilities of microcavity polartions in the presence of one-dimensional
periodic potentials. Instabilities appear in a certain window of pump momentum orientations with
respect to the potential, so that the momentum projection onto the direction of periodicity is large
enough. Ring-shaped domains of parametrically amplified perturbations form a periodic chain in
momentum space. Independently from the orientation of the pump momentum, the chain maintains
its orientation along the direction of periodicity of the system. In the physical space the amplified
structures emerge as stripes modulated along the direction of periodicity and of finite width in the
orthogonal direction.

PACS numbers: 42.65.Yj, 42.65.Sf, 71.36.+c

I. INTRODUCTION

Polaritons existing due to strong coupling between
photons and excitons in semiconductor microcavities
[1, 2] have attracted much attention following recent suc-
cessful demonstration of their non-equilibrium condensa-
tion using incoherent [3, 4] and coherent [5, 6] pumping.
Amongst peculiar features of polaritons in the strong cou-
pling regime are ultra-fast and strong nonlinearity pro-
vided by the repulsive interaction of excitons and the un-
usual shape of the lower dispersion branch having the in-
flection point where the effective polariton mass changes
sign. Combination of these features leads to a variety
of novel effects not seen in the microcavities operating
in the weak-coupling regime [7]. In particular, the spe-
cific shape of the dispersion makes it possible to satisfy
resonance conditions for parametric scattering of a de-
generate pair of pump polaritons into the signal and idler
ones [8]. Both parametric amplification of the seeded sig-
nal [9, 10] and spontaneous polariton emission through
parametric (modulational) instability [5, 6, 9] have been
experimentally observed in microcavities pumped in a
vicinity of the inflection point. Comprehensive theoreti-
cal investigation of these processes can be found, e.g. in
Ref. [11].

A well known possibility to control dispersion and
hence the sign of effective mass is by means of peri-
odic potentials. Recent studies of parametric processes
in photonic crystal cavities have revealed such effects as
inhibition of parametric instability by the photonic band-
gap [12, 13], on one hand, and instabilities induced by the
periodic potential [13], on the other. Existence of various
localized structures due to inverted effective mass have
been revealed in photonic crystal cavities [14, 15] and
recently in polariton cavities [16]. Coherent excitation
of different periodic polariton states – polariton lattices
– has been experimentally realized using either acous-
tic modulation [18], or mirrors with a pattern of metal
stripes [17]. The former approach is more flexible, since
both amplitude and period of the potential are readily
controlled [18, 19].

In this work we discuss instabilities of polaritons in-
duced by the presence of one-dimensional periodic poten-
tials. Periodicity of the system strongly modifies disper-
sion of small amplitude perturbations – Bogolyubov spec-
trum – in the corresponding direction. For weak poten-
tials this modification can be understood as folding of the
spectrum of the homogeneous system into the first Bril-
louin zone. We demonstrate, that for different orienta-
tions of the pump momentum, the folding leads to cross-
ings of branches of forward- and backward-propagating
polaritons having either the same or opposite signs of en-
ergy. Taking into account potential induced interactions,
the former leads to the avoided anti-crossing in the spec-
trum, while the latter to the parametric instabilities.

II. THE MODEL AND POLARITON LATTICES

A well accepted dimensionless mean-field model de-
scribing strong coupling of excitons and photons in semi-
conductor microcavities is [2, 20]:

∂tE − i∇2E + [γph − iU(y)]E = iΨ

+ Epe
i~kp~r−iδpt , (1)

∂tΨ+ [γe − iW (y)] Ψ + i|Ψ|2Ψ = iE , (2)

where E is the slowly varying amplitude of the intracav-
ity electric field and Ψ is the amplitude of the coherent
excitons. ∇2 ≡ ∂2x + ∂2y , ~r = ~ix + ~jy, where (x, y) is
the microcavity plane. We assume that the cavity is in
resonance with excitons. δp is the detuning of the pump

beam Ep from the resonance. ~kp = kp(~i cos θ +~j sin θ) is
the in-plane pump momentum, with kp = 0 correspond-
ing to the normal incidence. Polarization of the pump is
assumed parallel to the cavity plane, so that no change
in the polarization state happens when the angle of inci-
dence is varied, and there is no couping to polariton spins.
γph and γe are the damping parameters for photons and
excitons, respectively. The normalization of equations is
described in details in [20]. By varying the Rabi energy
between 1meV and 10meV we find that one unit of time
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FIG. 1: (Color online) Polariton lattices. (a) Average ampli-
tude Ē = 1/L

∫
dyE0(y) of the lattice solutions as a func-

tion of Ep: θ = 0 (blue lines) and θ = π/2 (red lines).
U0 = W0 = 0.75, δp = −0.3, kp = 0.8, γph = γe = 0.1.
Solution for the no potential case U0 = W0 = 0 is plotted
with thin black lines. Solid/dashed lines correspond to sta-
ble/unstable branches. (b) Profiles of the lattice solutions for
Ep = 0.3, θ = 0 (blue solid line), θ = π/2 (red dashed line),
and no potential (thin black line) cases.

varies between 1 and 0.1ps and one unit of x and y is
between 1 and 0.3µm.
U(y) and W (y) are the one-dimensional periodic po-

tentials, which account for modulations of the cavity and
exciton resonances, respectively. For the case of acoustic
modulation, and neglecting the relatively slow motion of
phonons, both potentials have similar strength and can
be approximated as [18]:

U(y) = U0 cos(2πy/L) , (3)

W (y) =W0 cos(2πy/L) . (4)

Typical amplitudes of modulation are of the order of the
vacuum Rabi splitting [18], so that U0,W0 ∼ 0.5 ÷ 1
in our dimensionless units. For the case of potentials
created by mirror patterning, only photonic component
is modulated: U0 6= 0, W0 = 0. While the ratio between
U0 and W0 does not qualitatively affect the instabilities
discussed, we fix U0 =W0.
Orientation of the pump momentum θ with respect

to the periodic potential is critically important for the
properties of our system. Below we demonstrate that the
potential induced interactions between polaritons happen
in different ways for two principal orientations: along
the direction of periodicity y (θ = π/2) and along the
homogeneous direction x (θ = 0).
Stationary polariton lattices are sought in the form

E = E0(y)e
i~kp~r−iδpt, Ψ = Ψ0(y)e

i~kp~r−iδpt, E0 and Ψ0

satisfy

∂2yE0 + i2kp sin θ∂yE0 +
[

δp − k2p + U + iγph
]

E0

= −Ψ0 + iEp (5)

[δp +W + iγe] Ψ0 − |Ψ0|
2Ψ0 = −E0 . (6)

This system is solved numerically on the interval y ∈
[−L/2, L/2] with periodic boundary conditions, by dis-
cretizing y dimension and applying Newton-Raphson it-
erations. The lattice solutions found are shown in Fig. 1
and discussed below.

According to the common experimental conditions
[5, 6], we choose the pump frequency within the lower
polariton branch, −1 < δp < 0. The pump momen-
tum kp is taken to be slightly below the inflection point
kp < kcr ≈ 0.9. For such choice of parameters, the sta-
tionary solution in the no potential case (U0 = W0 = 0)
has three branches (S-shape bistability), see thin black
curve in Fig. 1(a), with the upper branch being always
stable (no parametric instability). Average amplitudes
of the polariton lattices are plotted in Fig. 1(a) for the
two principal orientations of the pump momentum. The
corresponding lattice profiles for the upper branch of
the bistability loop are shown in Fig. 1(b). While the
bistability is preserved in both cases, the upper branch
becomes unstable within a large window of Ep for the
pump momentum oriented along the direction of peri-
odicity (θ = π/2). As we demonstrate in the following
sections, this instability is caused by parametric interac-
tions between forward- and backward-propagating per-
turbations, and leads to growth of periodic patterns.

III. STABILITY ANALYSIS

To analyze stability of polariton lattices we con-
sider small perturbations to the stationary solution

E0(y),Ψ0(y): E = [E0(y) + e(x, y, t)]ei
~kp~r−iδpt, Ψ =

[Ψ0(y) + ψ(x, y, t)]ei
~kp~r−iδpt, and linearize the resulting

equations for e, ψ. The resulting system can be written
as:

i∂ta = η̂
δH

δa∗
− iΓ̂a , (7)

where a = [e, ψ, e∗, ψ∗]T , δH/δa∗ =
[δH/δe∗, δH/δψ∗, δH/δe, δH/δψ]T ,

η̂ =







−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1






, Γ̂ =







γph 0 0 0
0 γe 0 0
0 0 γph 0
0 0 0 γe






, (8)

and H is the Bogolyubov energy functional

H =

∫ ∫

dxdy
{

−|∇e|2 − i~kp (e∇e
∗ − e∗∇e)

+
(

∆ph + U − k20
)

|e|2 +
(

∆e +W − 2|Ψ0|
2
)

|ψ|2

+ψe∗ + ψ∗e−
1

2
Ψ2

0(ψ
∗)2 −

1

2
(Ψ∗

0)
2ψ2

}

. (9)

Since all the coefficients in Eq. (9) are periodic in y, we
can apply the Floquet-Bloch theorem. Thus we expand
perturbations into Bloch modes along y and into plane
waves along x directions:

f(~r, t) =

∫ +∞

−∞

dκ

∫ π/L

−π/L

dqB
[

fi(y)e
iκx+iqBy−iδt+λt+

f∗

s (y)e
−iκx−iqBy+iδt+λt

]

,(10)



where fs,i = es,i, ψs,i are periodic in y with the period L,
qB is the quasi-momentum along the direction of period-
icity, κ is the momentum along the homogeneous direc-
tion. λ and δ are real and represent the sidebands growth
rates and frequencies, respectively. They are determined
from the eigenvalue problem:

(δ + iλ)aB =
(

η̂M̂ − iΓ̂
)

aB , (11)

where aB = [ei, ψi, es, ψs]
T and

M̂ =







He −De 1 0 0
1 Hq 0 −Ψ2

0

0 0 He +De 1
0 −(Ψ2

0)
∗ 1 Hq






, (12)

He = ∂2y + i2qB∂y + δp − k20 − κ2 − q2B + U(y) ,(13)

Hq = δp +W (y)− 2|Ψ0|
2 , (14)

De = 2kp {κ cos θ + qB sin θ − sin θi∂y} . (15)

We solve Eq. (11) numerically by discretizing y on the
interval y ∈ [−L/2, L/2] with periodic boundary condi-
tions. According to our definition, any eigenvalue with
λ > 0 corresponds to the unstable perturbation.
The case of a homogeneous system, U0 = W0 = 0,

is formally recovered by taking L → 0. Then es,i and
ψs,i become constants, while the spectrum of eigenval-
ues δ + iλ consists of two pairs of branches [11]. Within
each pair, branches are related by symmetry transforma-

tion δ(~kp + ~κ) = −δ(~kp − ~κ), ~κ = ~iκ + ~jqB. The stable
perturbations have opposite signs of the Bogolyubov en-
ergy functional H (Krein signature) in the limit of zero
dissipation, while unstable perturbations carry zero en-
ergy. Collision of two eigenvalues with opposite Krein
signatures leads to instabilities, while approaching of two
eigenvalues with the same Krein signature leads to the
branch anti-crossing [21]. As we illustrate below, this
mechanism still applies when small to moderate dissipa-
tion effects, Γ̂ 6= 0, are taken into account.
Since periodic potentials strongly modify dispersion

along ky direction, it is instructive to perform first the
simplified one-dimensional analysis assuming κ = 0. In
this case the entire momentum of perturbations along the
grooves of the potential (x coordinate) is given by the cor-
responding component of the pump momentum kp cos θ.
Figure 2(a) shows the spectrum of the stable polariton
solution (upper branch) in the homogeneous microcavity
for the case when pump is tilted along x direction (θ = 0).
Only two branches closest to zero are shown, the other
two are located further away and do not play role in the
instabilities discussed below. With the potentials, the
spectrum becomes periodic in qB. In the limit of small
U0,W0 → 0, its structure can be approximated by plot-
ting replicas of the spectrum of the homogeneous system
shifted in qB by 2πn/L, n = 0,±1,±2, . . ., and consid-
ering range of quasi-momenta within the first Brillouin
zone −π/L ≤ qB ≤ π/L, see Fig. 2(b). One can see that
this folding leads to intra-branch intersections of eigen-
values having the same Krein signature (since the same
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FIG. 2: (Color online) Bogolyubov spectrum for the case of
pump momentum oriented along the homogeneous direction
(θ = 0). (a) Spectrum of the homogeneous system, only two
closest to zero branches are shown. Black/red curves corre-
spond to branches with positive/negative Krein signatures.
(b) Schematic folding of the spectrum to the first Brillouin
zone (boundaries are indicated by dashed vertical lines) in
the limit U0,W0 → 0,L = 3. (c) and (d) spectra of peri-
odical system with U0 = W0 = 0.25 and U0 = W0 = 0.75,
respectively. All figures correspond to the pump parameters
Ep = 0.3, kp = 0.8.

branch is involved) near the edges and centre of the Bril-
louin zone. At each intersection forward- (∂δ/∂qB > 0)
and backward-propagating (∂δ/∂qB < 0) perturbations
have the same complex eigenvalue δ + iλ. For any non-
zero amplitudes of the potentials, the periodicity induced
interaction between these perturbations lifts the degen-
eracy, so that frequencies δ of forward- and backward-
propagating perturbations split. This leads to appear-
ance of additional gaps in the spectrum, becoming wider
as the potential strength is increased, see Figs. 2(c),(d).

Different scenario occurs when the pump is tilted along
y direction (θ = π/2), see Fig. 3. Now the two branches
of the homogeneous system overlap in δ and are separated
in qB , see Fig. 3(a). As the result, the folding into the
first Brillouin zone leads to the inter-band intersections,
mixing perturbations with opposite Krein signatures, see
Fig. 3(b). For non-zero U0 andW0 such degeneracies are
lifted through splitting of imaginary parts λ of complex
eigenvalues, see Figs. 3(c),(e). Increasing the strength of
potentials, one of the λ’s in each pair is pushed above
zero, resulting in the instability. Due to the symmetry
of the problem, unstable perturbations always appear in
pairs ±qB, with the corresponding detunings from the
pump frequency ±δ. This is typical for parametric pro-
cesses with +qB (−qB) corresponding to the signal (idler)
beams. Further increase of U0 andW0 leads to wider do-
mains of instabilities, see Figs. 3(d),(f).

When the pump momentum is taken beyond the in-
flection point, kp > kcr, inter-band intersections leading
to parametric instabilities become possible in the homo-
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FIG. 3: (Color online) Bogolyubov spectrum for the case of
pump momentum oriented along the direction of periodicity
(θ = π/2). (a)-(d) The same as Fig. 2, but for θ = π/2.
(e) and (f) gain of perturbations corresponding to figures (c)
and (d), respectively. Shaded areas indicate range of unstable
perturbations (λ > 0).
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FIG. 4: Results of 2D stability analysis. Shaded areas in-
dicate domains of unstable perturbations for Ep = 0.3 and
pump orientations θ = π/2, (a), and θ = 3π/8, (b). Other
parameters are the same as in Fig. 1.

geneous system with no potential [11]. In contrast to
the above discussed intersections due to the folding, two
branches in a vicinity of the crossing point have the same
sign of group velocity ∂δ/∂k in that case.

Taking into consideration perturbations with all pos-
sible κ 6= 0, we have found that the domains of unsta-
ble perturbations in the (κ, qB) plane are always aligned
along the κ = 0 axis with the maximal gain achieved at
κ = 0, qB 6= 0, see Fig. 4. Rotating the in-plane pump
momentum from θ = π/2 to θ = 0, the domains gradu-
ally shrink and disappear, while they remain centered at
κ = 0, cf. Fig. 4(a) and (b). This is in a sharp contrast
with the case of parametric instabilities of polaritons in
a homogeneous cavity, where the two domains are always
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FIG. 5: (a) and (b) maximal perturbation growth rate as
functions of the pump tilt for Ep = 0.3, and pump amplitude
for θ = π/2, respectively. Other parameters are the same as
in Figs. 1.

oriented along the direction of the pump momentum [11],
and hence rotate together with θ.
In Fig. 5(a) the maximal gain is plotted as the function

of the pump orientation θ. The gain becomes larger with
growing y component of the pump momentum, reaching
its maximum value at θ = π/2. Increase of the pump
amplitude with fixed θ suppresses the instability, so that
polariton lattices become stable far enough from their
bistability domain, cf. Figs. 1 and 5(b).

IV. DYNAMICAL GROWTH OF

PERTURBATIONS

In order to validate our stability analysis and study
long time evolution of polariton lattices in the unstable
regime, we have performed a series of direct simulations
of Eqs. (1),(2). Parametric instabilities have been trig-
gered by a short input pulse added to the r.h.s. of Eq. (1)

Es(~r, t) = ξ(~r)ei
~k0~re−(t−t0)

2/T 2

, (16)

where ξ(~r) is a complex function with a random phase,

|ξ(~r)| ≡ ε � |Ep|, ~k0 shifts the momentum, so that the
spectrum of ξ covers a large area in k-space surrounding
one of the predicted regions of unstable perturbations,
see Figs. 6(a), (b). The initial fields are set to zero, and
the seed pulse of duration T is delayed in time by t0 � T ,
permitting the system to relax to the stationary state.
Results of our numerical simulations are summarized in

Figs. 6 and 7. Spectrum of the stationary lattice appears
in Figs. 6(a),(c) as the periodic grid of points located at
kx = kp cos(θ), ky = kp sin(θ)+2πn/L, n = 0,±1,±2, . . ..

Subtracting the pump momentum, ~κ = ~k − ~kp, and
making reduction to the first Brillouin zone, the grid
transforms into the single peak at qB = κ = 0, see
Figs. 6(b),(d). The additional seed pulse excites po-
laritons with momenta distributed almost evenly across
the entire first Brillouin zone, see Fig. 6(b). At larger
times we observe parametric amplification of polaritons
belonging to the chain of rings in the (kx, ky)-plane, see
Fig. 6(c). Rings are centered at the boundaries of the
first and higher Brillouin zones, forming a periodic chain
along ky axis. Following reduction to the first Brillouin



FIG. 6: (Color online) Numerical propagation results: full
spectrum (left) and folded to the first Brillouin zone (right)
at different times: (a), (b) t = 200, (c), (d) t = 500. Dashed
horizontal lines indicate boundaries of the first Brillouin zone.
Spectrum of the polariton lattice is shown with solid cir-
cles. Parameters of the pump and lattice are the same as
in Fig. 4(a). Parameters of the seed pulse are: T = 2.5,
t0 = 200, ε = 0.01.

FIG. 7: Field intensity patterns following evolution of un-
stable perturbations. (a) θ = π/2, t = 500; (b) θ = 3π/8,
t = 850. Other parameters as in Fig. 6. Polariton lattice
solution E0 is subtracted in the plots in order to isolate the
perturbation field.

zone, Fig. 6(d), rings transform into two arcs, as pre-
dicted by our linear stability analysis, cf. Fig. 4(a) and
Fig. 6(d).
The corresponding patterns in the physical plane of

the cavity are shown in Fig. 7. Because of the verti-
cal orientation of the rings of instability in the momen-

tum space, the emerging real space patterns have a pro-
nounced chains of high intensity spots, which are also
oriented along the y coordinate, regardless orientation
of the pump momentum. The period of modulation of
stripes along y direction is defined by the correspond-
ing quasi-momentum qB of unstable perturbations, and
does not generally coincide with the lattice period. Re-
markably, amplified structures usually appear as stripes
of finite width along x direction. If θ 6= π/2, stripes drift
along x direction due to the non-zero corresponding com-
ponent of the pump momentum, but their width remain
practically unchanged over long time intervals. Recently
we reported novel mechanism of localization of polaritons
due to the interplay between diffraction and parametric
scattering [22] and formation of one- and two-dimensional
solitons supported by this mechanism. The results of our
numerical simulations presented in Fig. 7 indicate a pos-
sible existence of similar localized structures in microcav-
ities with periodic potentials.

V. SUMMARY

In summary, we reported parametric instabilities of
polariton lattices in microcavities with one-dimensional
periodic potentials. Periodicity induces interactions be-
tween forward- and backward-propagating polaritons.
We found that these interactions happen in different ways
depending on the orientation of the pump momentum
with respect to the potential. When the pump is tilted
along the homogeneous direction of the microcavity, the
interaction happens between polaritons with the same
sign of the Bogolyubov energy. This leads to the anti-
crossing of the corresponding bands and no instabilities
are generated. On the contrary, when the pump momen-
tum component along the direction of the periodicity of
the system is large enough, interactions between polari-
tons with opposite signs of the energy are allowed. Such
interactions lead to the parametric instabilities of the po-
lariton lattices. While orientation of the pump momen-
tum with respect to the potential controls the strength
of instabilities, the amplified structures are always mod-
ulated along the direction of periodicity of the system.
We acknowledge support from the EPSRC project

EP/D079225/1.
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