5 research outputs found

    Reference-grade genome and large linear plasmid of Streptomyces rimosus: pushing the limits of Nanopore sequencing

    Get PDF
    [EN] Streptomyces rimosus ATCC 10970 is the parental strain of industrial strains used for the commercial production of the important antibiotic oxytetracycline. As an actinobacterium with a large linear chromosome containing numerous long repeat regions, high GC content, and a single giant linear plasmid (GLP), these genomes are challenging to assemble. Here, we apply a hybrid sequencing approach relying on the combination of short- and long-read next-generation sequencing platforms and whole-genome restriction analysis by using pulsed-field gel electrophoresis (PFGE) to produce a high-quality reference genome for this biotechnologically important bacterium. By using PFGE to separate and isolate plasmid DNA from chromosomal DNA, we successfully sequenced the GLP using Nanopore data alone. Using this approach, we compared the sequence of GLP in the parent strain ATCC 10970 with those found in two semi-industrial progenitor strains, R6-500 and M4018. Sequencing of the GLP of these three S. rimosus strains shed light on several rearrangements accompanied by transposase genes, suggesting that transposases play an important role in plasmid and genome plasticity in S. rimosus. The polished annotation of secondary metabolite biosynthetic pathways compared to metabolite analysis in the ATCC 10970 strain also refined our knowledge of the secondary metabolite arsenal of these strains. The proposed methodology is highly applicable to a variety of sequencing projects, as evidenced by the reliable assemblies obtainedSIThis work was supported as part of the European project “Thoroughly Optimised Production Chassis for Advanced Pharmaceutical Ingredients” (grant ID 720793, European Union’s Horizon 2020 Research and Innovation Program) and by the Slovenian Research Agency (P4-0116, P4-0077, and P1-0034). L.S. is supported by a Slovenian Research Agency young researcher grant (35220200570), and M.T. is supported by grant C3330-19-952047 funded by Republic of Slovenia Ministry of Education, Science, and Sport and the European Union European Regional Development Fun

    Reference-Grade Genome and Large Linear Plasmid of Streptomyces rimosus : Pushing the Limits of Nanopore Sequencing

    Get PDF
    Streptomyces rimosus ATCC 10970 is the parental strain of industrial strains used for the commercial production of the important antibiotic oxytetracycline. As an actinobacterium with a large linear chromosome containing numerous long repeat regions, high GC content, and a single giant linear plasmid (GLP), these genomes are challenging to assemble. Here, we apply a hybrid sequencing approach relying on the combination of short- and long-read next-generation sequencing platforms and whole-genome restriction analysis by using pulsed-field gel electrophoresis (PFGE) to produce a high-quality reference genome for this biotechnologically important bacterium. By using PFGE to separate and isolate plasmid DNA from chromosomal DNA, we successfully sequenced the GLP using Nanopore data alone. Using this approach, we compared the sequence of GLP in the parent strain ATCC 10970 with those found in two semi-industrial progenitor strains, R6-500 and M4018. Sequencing of the GLP of these three S. rimosus strains shed light on several rearrangements accompanied by transposase genes, suggesting that transposases play an important role in plasmid and genome plasticity in S. rimosus. The polished annotation of secondary metabolite biosynthetic pathways compared to metabolite analysis in the ATCC 10970 strain also refined our knowledge of the secondary metabolite arsenal of these strains. The proposed methodology is highly applicable to a variety of sequencing projects, as evidenced by the reliable assemblies obtained. IMPORTANCE The genomes of Streptomyces species are difficult to assemble due to long repeats, extrachromosomal elements (giant linear plasmids [GLPs]), rearrangements, and high GC content. To improve the quality of the S. rimosus ATCC 10970 genome, producer of oxytetracycline, we validated the assembly of GLPs by applying a new approach to combine pulsed-field gel electrophoresis separation and GLP isolation and sequenced the isolated GLP with Oxford Nanopore technology. By examining the sequenced plasmids of ATCC 10970 and two industrial progenitor strains, R6-500 and M4018, we identified large GLP rearrangements. Analysis of the assembled plasmid sequences shed light on the role of transposases in genome plasticity of this species. The new methodological approach developed for Nanopore sequencing is highly applicable to a variety of sequencing projects. In addition, we present the annotated reference genome sequence of ATCC 10970 with a detailed analysis of the biosynthetic gene clusters

    Multiple copies of the oxytetracycline gene cluster in selected Streptomyces rimosus strains can provide significantly increased titers.

    No full text
    Background: Natural products are a valuable source of biologically active compounds that have applications in medicine and agriculture. One disadvantage with natural products is the slow, time-consuming strain improvement regimes that are necessary to ensure sufficient quantities of target compounds for commercial production. Although great efforts have been invested in strain selection methods, many of these technologies have not been improved in decades, which might pose a serious threat to the economic and industrial viability of such important bioprocesses. Results: In recent years, introduction of extra copies of an entire biosynthetic pathway that encodes a target product in a single microbial host has become a technically feasible approach. However, this often results in minor to moderate increases in target titers. Strain stability and process reproducibility are the other critical factors in the industrial setting. Industrial Streptomyces rimosus strains for production of oxytetracycline are one of the most economically efficient strains ever developed, and thus these represent a very good industrial case. To evaluate the applicability of amplification of an entire gene cluster in a single host strain, we developed and evaluated various gene tools to introduce multiple copies of the entire oxytetracycline gene cluster into three different Streptomyces rimosus strains: wild-type, and medium and high oxytetracycline-producing strains. We evaluated the production levels of these engineered S. rimosus strains with extra copies of the oxytetracycline gene cluster and their stability, and the oxytetracycline gene cluster expression profiles; we also identified the chromosomal integration sites. Conclusions: This study shows that stable and reproducible increases in target secondary metabolite titers can be achieved in wild-type and in high oxytetracycline-producing strains, which always reflects the metabolic background of each independent S. rimosus strain. Although this approach is technically very demanding and requires systematic effort, when combined with modern strain selection methods, it might constitute a very valuable approach in industrial process development

    FK506 biosynthesis is regulated by two positive regulatory elements in <it>Streptomyces tsukubaensis</it>

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FK506 (Tacrolimus) is an important immunosuppressant, produced by industrial biosynthetic processes using various <it>Streptomyces</it> species. Considering the complex structure of FK506, it is reasonable to expect complex regulatory networks controlling its biosynthesis. Regulatory elements, present in gene clusters can have a profound influence on the final yield of target product and can play an important role in development of industrial bioprocesses.</p> <p>Results</p> <p>Three putative regulatory elements, namely <it>fkbR</it>, belonging to the LysR-type family, <it>fkbN</it>, a large ATP-binding regulator of the LuxR family (LAL-type) and <it>allN</it>, a homologue of AsnC family regulatory proteins, were identified in the FK506 gene cluster from <it>Streptomyces tsukubaensis</it> NRRL 18488, a progenitor of industrial strains used for production of FK506. Inactivation of <it>fkbN</it> caused a complete disruption of FK506 biosynthesis, while inactivation of <it>fkbR</it> resulted in about 80% reduction of FK506 yield. No functional role in the regulation of the FK506 gene cluster has been observed for the <it>allN</it> gene. Using RT-PCR and a reporter system based on a chalcone synthase <it>rppA</it>, we demonstrated, that in the wild type as well as in <it>fkbN</it>- and <it>fkbR</it>-inactivated strains, <it>fkbR</it> is transcribed in all stages of cultivation, even before the onset of FK506 production, whereas <it>fkbN</it> expression is initiated approximately with the initiation of FK506 production. Surprisingly, inactivation of <it>fkbN</it> (or <it>fkbR</it>) does not abolish the transcription of the genes in the FK506 gene cluster in general, but may reduce expression of some of the tested biosynthetic genes. Finally, introduction of a second copy of the <it>fkbR</it> or <it>fkbN</it> genes under the control of the strong <it>ermE</it>* promoter into the wild type strain resulted in 30% and 55% of yield improvement, respectively.</p> <p>Conclusions</p> <p>Our results clearly demonstrate the positive regulatory role of <it>fkbR</it> and <it>fkbN</it> genes in FK506 biosynthesis in <it>S. tsukubaensis</it> NRRL 18488. We have shown that regulatory mechanisms can differ substantially from other, even apparently closely similar FK506-producing strains, reported in literature. Finally, we have demonstrated the potential of these genetically modified strains of <it>S. tsukubaensis</it> for improving the yield of fermentative processes for production of FK506.</p
    corecore