11 research outputs found

    Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities

    No full text
    Abstract Aberrant DNA methylation is an epigenetic hallmark of melanoma, known to play important roles in melanoma formation and progression. Recent advances in genome-wide methylation methods have provided the means to identify differentially methylated genes, methylation signatures, and potential biomarkers. However, despite considerable effort and advances in cataloging methylation changes in melanoma, many questions remain unanswered. The aim of this review is to summarize recent developments, emerging trends, and important unresolved questions in the field of aberrant DNA methylation in melanoma. In addition to reviewing recent developments, we carefully synthesize the findings in an effort to provide a framework for understanding the current state and direction of the field. To facilitate clarity, we divided the review into DNA methylation changes in melanoma, biomarker opportunities, and therapeutic developments. We hope this review contributes to accelerating the utilization of the diagnostic, prognostic, and therapeutic potential of DNA methylation for the benefit of melanoma patients

    DNMT3b Modulates Melanoma Growth by Controlling Levels of mTORC2 Component RICTOR

    No full text
    DNA methyltransferase DNMT3B is frequently overexpressed in tumor cells and plays important roles during the formation and progression of several cancer types. However, the specific signaling pathways controlled by DNMT3B in cancers, including melanoma, are poorly understood. Here, we report that DNMT3B plays a pro-tumorigenic role in human melanoma and that DNMT3B loss dramatically suppresses melanoma formation in the Braf/Pten mouse melanoma model. Loss of DNMT3B results in hypomethylation of the miR-196b promoter and increased miR-196b expression, which directly targets the mTORC2 component Rictor. Loss of RICTOR in turn prevents mTORC2 activation, which is critical for melanoma formation and growth. These findings establish Dnmt3b as a regulator of melanoma formation through its effect on mTORC2 signaling. Based on these results, DNMT3B is a potential therapeutic target in melanoma

    Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma

    Get PDF
    On the basis of multidimensional and comprehensive molecular characterization (including DNA methalylation and copy number, RNA, and protein expression), we classified 894 renal cell carcinomas (RCCs) of various histologic types into nine major genomic subtypes. Site of origin within the nephron was one major determinant in the classification, reflecting differences among clear cell, chromophobe, and papillary RCC. Widespread molecular changes associated with TFE3 gene fusion or chromatin modifier genes were present within a specific subtype and spanned multiple subtypes. Differences in patient survival and in alteration of specific pathways (including hypoxia, metabolism, MAP kinase, NRF2-ARE, Hippo, immune checkpoint, and PI3K/AKT/mTOR) could further distinguish the subtypes. Immune checkpoint markers and molecular signatures of T cell infiltrates were both highest in the subtype associated with aggressive clear cell RCC. Differences between the genomic subtypes suggest that therapeutic strategies could be tailored to each RCC disease subset
    corecore