7 research outputs found

    Protein Microarray Chips

    No full text
    Livet tas för givet av de flesta. Det finns dÀremot mÄnga som Àgnar stora delar av sitt liv för att försöka lösa dess mysterier. En del av lösningen ligger i att förstÄ hur alla molekyler Àr sammanlÀnkade i det gigantiska nÀtverk som definierar den levande organismen. Under det senaste seklet har en hel del forskning utförts för att kartlÀgga dessa nÀtverk. Resultatet av dessa mödor kan vi se i de lÀkemedel som vi har idag och som har utvecklats för att bota eller Ätminstone lindra olika sjukdomar och tillstÄnd. DessvÀrre finns det fortfarande mÄnga sjukdomar som Àr obotliga (t.ex. cancer) och mycket arbete krÀvs för att förstÄ dem till fullo och kunna designa framgÄngsrika behandlingar. Arbetet i denna avhandling beskriver en analytisk plattform som kan anvÀndas för att effektivisera kartlÀggningsprocessen; protein-mikroarrayer. Mikroarrayer Àr ytor som har mikrometerstora (tusendels millimeter) strukturer i ett regelbundet mönster med möjligheten att studera mÄnga interaktioner mellan biologiska molekyler samtidigt. Detta medför snabbare och fler analyser - till en lÀgre kostnad. Protein-mikroarrayer har funnits i ungefÀr ett decennium och har följt i fotspÄren av de framgÄngsrika DNA-mikroarrayerna. Man bedömer att protein-mikroarrayerna har en minst lika stor potential som DNA mikroarrayerna dÄ det egentligen Àr mer relevant att studera proteiner, som Àr de funktionsreglerande molekylerna i en organism. Vi har i detta arbete tillverkat modellytor för stabil inbindning av proteiner, som lÀmnar dem intakta, funktionella och korrekt orienterade i ett mikroarray format. DÀrmed har vi adresserat ett stort problem med protein mikroarrays, nÀmligen att proteiner Àr kÀnsliga molekyler och har i mÄnga fall svÄrt att överleva tillverkningsprocessen av mikroarrayerna. Vi har Àven studerat en metod att tillverka mikroarrayer av proteiner bundna till strukturer, som modellerats att efterlikna cellytor. Detta Àr sÀrkilt viktigt eftersom mÄnga (hÀlften) av dagens (och sÀkerligen framtidens) lÀkemedel Àr riktade mot att pÄverka denna typ av proteiner och att studera dessa i sin naturliga miljö Àr dÀrför vÀldigt relevant. I ett annat projekt har vi anvÀnt protein mikroarrayer för att detektera fyra vanliga droger (heroin, amfetamin, ecstasy och kokain). Detektionen baseras pÄ anvÀndandet av antikroppar som lossnar frÄn platser pÄ ytan nÀr de kommer i kontakt med ett narkotikum. Detta koncept kan enkelt utvecklas till att detektera mer Àn bara fyra droger. Vi har Àven lyckats att parallellt mÀta förekomsten av en annan typ av förening pÄ mikroarray ytan, nÀmligen det explosiva Àmnet trinitrotoluen (TNT). Detta visar pÄ en mÄngsidig plattform för detektionen av i princip vilken typ av farlig eller olaglig substans som helst - och pÄ en yta! Vi förestÀller oss dÀrför att möjliga tillÀmpningsomrÄden finns inom brottsbekÀmpning, i kampen mot terrorism och mot narkotikamissbruk etc. Mikroarrayerna har i denna avhandling utforskats med optiska metoder som tillÄter studie av omÀrkta proteiner, vilket resulterar i sÄ naturliga molekyler som möjligt.Life is a thing taken for granted by most. However, it is the life-long quest of many to unravel the mysteries of it. Understanding and characterizing the incomprehensively complex molecular interaction networks within a biological organism, which defines that organism, is a vital prerequisite to understand life itself. Already, there has been a lot of research conducted and a large knowledge has been obtained about these pathways over, especially, the last century. We have seen the fruits of these labors in e.g. the development of medicines which have been able to cure or at least arrest many diseases and conditions. However, many diseases are still incurable (e.g. cancer) and a lot more work is still needed for understanding them fully and designing successful treatments. This work describes a generic analytical tool platform for aiding in more efficient (bio)molecular interaction mapping analyses; protein microarray chips. Microarray chips are surfaces with micrometer sized features with the possibility of studying the interactions of many (thousands to tens of thousands) (bio)molecules in parallel. This allows for a higher throughput of analyses to be performed at a reduced time and cost. Protein microarrays have been around for approximately a decade, following in the footsteps of the, so far, more successfully used DNA microarrays (developed in the 1990s). Microarrays of proteins are more difficult to produce because of the more complex nature of proteins as compared to DNA. In our work we have constructed model surfaces which allow for the stable, highly oriented, and functional immobilization of proteins in an array format. Our capture molecules are based on multivalent units of the chelator nitrilotriacetic acid (NTA), which is able to bind histidine-tagged proteins. Furthermore, we have explored an approach for studying lipid membrane bound systems, e.g. receptor-ligand interactions, in a parallelized, microarray format. The approach relies on the addressable, DNA-mediated adsorption of tagged lipid vesicles. In an analogous work we have used the protein microarray concept for the detection of four common narcotics (heroin, amphetamine, ecstasy, and cocaine). The detection is based on the displacement of loosely bound antibodies from surface array positions upon injection of a specific target analyte, i.e. a narcotic substance. The proof-of-concept chip can easily be expanded to monitor many more narcotic substances. In addition, we have also been able to simultaneously detect the explosive trinitrotoluene (TNT) along with the narcotics, showing that the chip is a versatile platform for the detection of virtually any type of harmful or illegal compound. This type of biosensor system is potentially envisaged to be used in the fight against crime, terrorism, drug abuse etc. Infrared reflection absorption spectroscopy together with ellipsometry has been used to characterize molecular layers used in the fabrication processes of the microarray features. Imaging surface plasmon resonance operating in the ellipsometric mode is subsequently used for functional evaluation of the microarrays using a well-defined receptor-ligand model system. This approach allows simultaneous and continuous monitoring of binding events taking place in multiple regions of interest on the microarray chip. A common characteristic of all the instrumentation used is that there is no requirement for labeling of the biomolecules to be detected, e.g. with fluorescent or radioactive probes. This feature allows for a flexible assay design and the use of more native proteins, without any time-consuming pretreatments

    Protein Microarray Chips

    No full text
    Livet tas för givet av de flesta. Det finns dÀremot mÄnga som Àgnar stora delar av sitt liv för att försöka lösa dess mysterier. En del av lösningen ligger i att förstÄ hur alla molekyler Àr sammanlÀnkade i det gigantiska nÀtverk som definierar den levande organismen. Under det senaste seklet har en hel del forskning utförts för att kartlÀgga dessa nÀtverk. Resultatet av dessa mödor kan vi se i de lÀkemedel som vi har idag och som har utvecklats för att bota eller Ätminstone lindra olika sjukdomar och tillstÄnd. DessvÀrre finns det fortfarande mÄnga sjukdomar som Àr obotliga (t.ex. cancer) och mycket arbete krÀvs för att förstÄ dem till fullo och kunna designa framgÄngsrika behandlingar. Arbetet i denna avhandling beskriver en analytisk plattform som kan anvÀndas för att effektivisera kartlÀggningsprocessen; protein-mikroarrayer. Mikroarrayer Àr ytor som har mikrometerstora (tusendels millimeter) strukturer i ett regelbundet mönster med möjligheten att studera mÄnga interaktioner mellan biologiska molekyler samtidigt. Detta medför snabbare och fler analyser - till en lÀgre kostnad. Protein-mikroarrayer har funnits i ungefÀr ett decennium och har följt i fotspÄren av de framgÄngsrika DNA-mikroarrayerna. Man bedömer att protein-mikroarrayerna har en minst lika stor potential som DNA mikroarrayerna dÄ det egentligen Àr mer relevant att studera proteiner, som Àr de funktionsreglerande molekylerna i en organism. Vi har i detta arbete tillverkat modellytor för stabil inbindning av proteiner, som lÀmnar dem intakta, funktionella och korrekt orienterade i ett mikroarray format. DÀrmed har vi adresserat ett stort problem med protein mikroarrays, nÀmligen att proteiner Àr kÀnsliga molekyler och har i mÄnga fall svÄrt att överleva tillverkningsprocessen av mikroarrayerna. Vi har Àven studerat en metod att tillverka mikroarrayer av proteiner bundna till strukturer, som modellerats att efterlikna cellytor. Detta Àr sÀrkilt viktigt eftersom mÄnga (hÀlften) av dagens (och sÀkerligen framtidens) lÀkemedel Àr riktade mot att pÄverka denna typ av proteiner och att studera dessa i sin naturliga miljö Àr dÀrför vÀldigt relevant. I ett annat projekt har vi anvÀnt protein mikroarrayer för att detektera fyra vanliga droger (heroin, amfetamin, ecstasy och kokain). Detektionen baseras pÄ anvÀndandet av antikroppar som lossnar frÄn platser pÄ ytan nÀr de kommer i kontakt med ett narkotikum. Detta koncept kan enkelt utvecklas till att detektera mer Àn bara fyra droger. Vi har Àven lyckats att parallellt mÀta förekomsten av en annan typ av förening pÄ mikroarray ytan, nÀmligen det explosiva Àmnet trinitrotoluen (TNT). Detta visar pÄ en mÄngsidig plattform för detektionen av i princip vilken typ av farlig eller olaglig substans som helst - och pÄ en yta! Vi förestÀller oss dÀrför att möjliga tillÀmpningsomrÄden finns inom brottsbekÀmpning, i kampen mot terrorism och mot narkotikamissbruk etc. Mikroarrayerna har i denna avhandling utforskats med optiska metoder som tillÄter studie av omÀrkta proteiner, vilket resulterar i sÄ naturliga molekyler som möjligt.Life is a thing taken for granted by most. However, it is the life-long quest of many to unravel the mysteries of it. Understanding and characterizing the incomprehensively complex molecular interaction networks within a biological organism, which defines that organism, is a vital prerequisite to understand life itself. Already, there has been a lot of research conducted and a large knowledge has been obtained about these pathways over, especially, the last century. We have seen the fruits of these labors in e.g. the development of medicines which have been able to cure or at least arrest many diseases and conditions. However, many diseases are still incurable (e.g. cancer) and a lot more work is still needed for understanding them fully and designing successful treatments. This work describes a generic analytical tool platform for aiding in more efficient (bio)molecular interaction mapping analyses; protein microarray chips. Microarray chips are surfaces with micrometer sized features with the possibility of studying the interactions of many (thousands to tens of thousands) (bio)molecules in parallel. This allows for a higher throughput of analyses to be performed at a reduced time and cost. Protein microarrays have been around for approximately a decade, following in the footsteps of the, so far, more successfully used DNA microarrays (developed in the 1990s). Microarrays of proteins are more difficult to produce because of the more complex nature of proteins as compared to DNA. In our work we have constructed model surfaces which allow for the stable, highly oriented, and functional immobilization of proteins in an array format. Our capture molecules are based on multivalent units of the chelator nitrilotriacetic acid (NTA), which is able to bind histidine-tagged proteins. Furthermore, we have explored an approach for studying lipid membrane bound systems, e.g. receptor-ligand interactions, in a parallelized, microarray format. The approach relies on the addressable, DNA-mediated adsorption of tagged lipid vesicles. In an analogous work we have used the protein microarray concept for the detection of four common narcotics (heroin, amphetamine, ecstasy, and cocaine). The detection is based on the displacement of loosely bound antibodies from surface array positions upon injection of a specific target analyte, i.e. a narcotic substance. The proof-of-concept chip can easily be expanded to monitor many more narcotic substances. In addition, we have also been able to simultaneously detect the explosive trinitrotoluene (TNT) along with the narcotics, showing that the chip is a versatile platform for the detection of virtually any type of harmful or illegal compound. This type of biosensor system is potentially envisaged to be used in the fight against crime, terrorism, drug abuse etc. Infrared reflection absorption spectroscopy together with ellipsometry has been used to characterize molecular layers used in the fabrication processes of the microarray features. Imaging surface plasmon resonance operating in the ellipsometric mode is subsequently used for functional evaluation of the microarrays using a well-defined receptor-ligand model system. This approach allows simultaneous and continuous monitoring of binding events taking place in multiple regions of interest on the microarray chip. A common characteristic of all the instrumentation used is that there is no requirement for labeling of the biomolecules to be detected, e.g. with fluorescent or radioactive probes. This feature allows for a flexible assay design and the use of more native proteins, without any time-consuming pretreatments

    Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions

    No full text
    A surface plasmon resonance (SPR) based flow chamber device was designed for real time detection of blood coagulation and platelet adhesion in platelet rich plasma (PRP) and whole blood. The system allowed the detection of surface interactions throughout the 6 mm length of the flow chamber. After deposition of thromboplastin onto a section of the sensor surface near the inlet of the flow chamber, coagulation was detected downstream of this position corresponding to a SPR signal of 7 to 8 mRIU (7 to 8 ng/mm2). A nonmodified control surface induced coagulation 3.5 times slower. Platelet adhesion to gold and fibrinogen coated surfaces in the magnitude of 1.25 and 1.66 mRIU was also shown with platelets in buffer, respectively. SPR responses obtained with PRP and whole blood on surfaces that were methylated or coated with von Willebrand factor (vWF), fibrinogen, or collagen, coincided well with platelet adhesion as observed with fluorescence microscopy in parallel experiments. The present SPR detection equipped flow chamber system is a promising tool for studies on coagulation events and blood cell adhesion under physiological flow conditions, and allows monitoring of short-range surface processes in whole blood. © 2007 Elsevier B.V. All rights reserved

    Addressable adsorption of lipid vesicles and subsequent protein interaction studies

    No full text
    We demonstrate a convenient chip platform for the addressable immobilization of protein-loaded vesicles on a microarray for parallelized, high-throughput analysis of lipid-protein systems. Self-sorting of the vesicles on the microarray was achieved through DNA bar coding of the vesicles and their hybridization to complementary strands, which are preimmobilized in defined array positions on the chip. Imaging surface plasmon resonance in ellipsometric mode was used to monitor vesicle immobilization, protein tethering, protein-protein interactions, and chip regeneration. The immobilization strategy proved highly specific and stable and presents a mild method for the anchoring of vesicles to predefined areas of a surface, while unspecific adsorption to both noncomplementary regions and background areas is nonexistent or, alternatively, undetectable. Furthermore, histidine-tagged receptors have been stably and functionally immobilized via bis-nitrilotriacetic acid chelators already present in the vesicle membranes. It was discovered though that online loading of proteins to immobilized vesicles leads to cross contamination of previously loaded vesicles and that it was necessary to load the vesicles offline in order to obtain pure protein populations on the vesicles. We have used this cross-binding effect to our benefit by coimmobilizing two receptor subunits in different ratios on the vesicle surface and successfully demonstrated ternary complex formation with their ligand. This approach is suitable for mechanistic studies of complex multicomponent analyses involving membrane-bound systems
    corecore