1,221 research outputs found
Pedobarographic analysis and quality of life after lisfranc fracture dislocation
Background: Few studies on tarsometatarsal fracture dislocations report on plantar pressure analysis and quality of life. The primary aim of this study was to determine the added value of plantar pressure analysis. The secondary aim was to determine quality of life and functional outcome. Materials and Methods: With a median followup of 76 months, 26 patients with an isolated Lisfranc injury participated. The Short Form 36 (SF-36) was used to determine the health related
Diagnostic labelling as determinant of antibiotic prescribing for acute respiratory tract episodes in general practice
<p>Abstract</p> <p>Background</p> <p>Next to other GP characteristics, diagnostic labelling (the proportion of acute respiratory tract (RT) episodes to be labelled as infections) probably contributes to a higher volume of antibiotic prescriptions for acute RT episodes. However, it is unknown whether there is an independent association between diagnostic labelling and the volume of prescribed antibiotics, or whether diagnostic labelling is associated with the number of presented acute RT episodes and consequently with the number of antibiotics prescribed per patient per year.</p> <p>Methods</p> <p>Data were used from the Second Dutch National Survey of General Practice (DNSGP-2) with 163 GPs from 85 Dutch practices, serving a population of 359,625 patients. Data over a 12 month period were analysed by means of multiple linear regression analysis. Main outcome measure was the volume of antibiotic prescriptions for acute RT episodes per 1,000 patients.</p> <p>Results</p> <p>The incidence was 236.9 acute RT episodes/1,000 patients. GPs labelled about 70% of acute RT episodes as infections, and antibiotics were prescribed in 41% of all acute RT episodes. A higher incidence of acute RT episodes (beta 0.67), a stronger inclination to label episodes as infections (beta 0.24), a stronger endorsement of the need of antibiotics in case of white spots in the throat (beta 0.11) and being male (beta 0.11) were independent determinants of the prescribed volume of antibiotics for acute RT episodes, whereas diagnostic labelling was not correlated with the incidence of acute RT episodes.</p> <p>Conclusion</p> <p>Diagnostic labelling is a relevant factor in GPs' antibiotic prescribing independent from the incidence of acute RT episodes. Therefore, quality assurance programs and postgraduate courses should emphasise to use evidence based prognostic criteria (e.g. chronic respiratory co-morbidity and old age) as an indication to prescribe antibiotics in stead of single inflammation signs or diagnostic labels.</p
Linear ensemble-coding in midbrain superior colliculus specifies the saccade kinematics
Recently, we proposed an ensemble-coding scheme of the midbrain superior colliculus (SC) in which, during a saccade, each spike emitted by each recruited SC neuron contributes a fixed minivector to the gaze-control motor output. The size and direction of this ‘spike vector’ depend exclusively on a cell’s location within the SC motor map (Goossens and Van Opstal, in J Neurophysiol 95: 2326–2341, 2006). According to this simple scheme, the planned saccade trajectory results from instantaneous linear summation of all spike vectors across the motor map. In our simulations with this model, the brainstem saccade generator was simplified by a linear feedback system, rendering the total model (which has only three free parameters) essentially linear. Interestingly, when this scheme was applied to actually recorded spike trains from 139 saccade-related SC neurons, measured during thousands of eye movements to single visual targets, straight saccades resulted with the correct velocity profiles and nonlinear kinematic relations (‘main sequence properties– and ‘component stretching’) Hence, we concluded that the kinematic nonlinearity of saccades resides in the spatial-temporal distribution of SC activity, rather than in the brainstem burst generator. The latter is generally assumed in models of the saccadic system. Here we analyze how this behaviour might emerge from this simple scheme. In addition, we will show new experimental evidence in support of the proposed mechanism
Large tunable valley splitting in edge-free graphene quantum dots on boron nitride
Coherent manipulation of binary degrees of freedom is at the heart of modern
quantum technologies. Graphene offers two binary degrees: the electron spin and
the valley. Efficient spin control has been demonstrated in many solid state
systems, while exploitation of the valley has only recently been started, yet
without control on the single electron level. Here, we show that van-der Waals
stacking of graphene onto hexagonal boron nitride offers a natural platform for
valley control. We use a graphene quantum dot induced by the tip of a scanning
tunneling microscope and demonstrate valley splitting that is tunable from -5
to +10 meV (including valley inversion) by sub-10-nm displacements of the
quantum dot position. This boosts the range of controlled valley splitting by
about one order of magnitude. The tunable inversion of spin and valley states
should enable coherent superposition of these degrees of freedom as a first
step towards graphene-based qubits
Optimal Control of Saccades by Spatial-Temporal Activity Patterns in the Monkey Superior Colliculus
A major challenge in computational neurobiology is to understand how populations of noisy, broadly-tuned neurons produce accurate goal-directed actions such as saccades. Saccades are high-velocity eye movements that have stereotyped, nonlinear kinematics; their duration increases with amplitude, while peak eye-velocity saturates for large saccades. Recent theories suggest that these characteristics reflect a deliberate strategy that optimizes a speed-accuracy tradeoff in the presence of signal-dependent noise in the neural control signals. Here we argue that the midbrain superior colliculus (SC), a key sensorimotor interface that contains a topographically-organized map of saccade vectors, is in an ideal position to implement such an optimization principle. Most models attribute the nonlinear saccade kinematics to saturation in the brainstem pulse generator downstream from the SC. However, there is little data to support this assumption. We now present new neurophysiological evidence for an alternative scheme, which proposes that these properties reside in the spatial-temporal dynamics of SC activity. As predicted by this scheme, we found a remarkably systematic organization in the burst properties of saccade-related neurons along the rostral-to-caudal (i.e., amplitude-coding) dimension of the SC motor map: peak firing-rates systematically decrease for cells encoding larger saccades, while burst durations and skewness increase, suggesting that this spatial gradient underlies the increase in duration and skewness of the eye velocity profiles with amplitude. We also show that all neurons in the recruited population synchronize their burst profiles, indicating that the burst-timing of each cell is determined by the planned saccade vector in which it participates, rather than by its anatomical location. Together with the observation that saccade-related SC cells indeed show signal-dependent noise, this precisely tuned organization of SC burst activity strongly supports the notion of an optimal motor-control principle embedded in the SC motor map as it fully accounts for the straight trajectories and kinematic nonlinearity of saccades
Source correlation of biomarkers in a mangrove ecosystem on Santa Catarina Island in southern Brazil
On Being the Right Size: The Impact of Population Size and Stochastic Effects on the Evolution of Drug Resistance in Hospitals and the Community
The evolution of drug resistant bacteria is a severe public health problem, both in hospitals and in the community. Currently, some countries aim at concentrating highly specialized services in large hospitals in order to improve patient outcomes. Emergent resistant strains often originate in health care facilities, but it is unknown to what extent hospital size affects resistance evolution and the resulting spillover of hospital-associated pathogens to the community. We used two published datasets from the US and Ireland to investigate the effects of hospital size and controlled for several confounders such as antimicrobial usage, sampling frequency, mortality, disinfection and length of stay. The proportion of patients acquiring both sensitive and resistant infections in a hospital strongly correlated with hospital size. Moreover, we observe the same pattern for both the percentage of resistant infections and the increase of hospital-acquired infections over time. One interpretation of this pattern is that chance effects in small hospitals impede the spread of drug-resistance. To investigate to what extent the size distribution of hospitals can directly affect the prevalence of antibiotic resistance, we use a stochastic epidemiological model describing the spread of drug resistance in a hospital setting as well as the interaction between one or several hospitals and the community. We show that the level of drug resistance typically increases with population size: In small hospitals chance effects cause large fluctuations in pathogen population size or even extinctions, both of which impede the acquisition and spread of drug resistance. Finally, we show that indirect transmission via environmental reservoirs can reduce the effect of hospital size because the slow turnover in the environment can prevent extinction of resistant strains. This implies that reducing environmental transmission is especially important in small hospitals, because such a reduction not only reduces overall transmission but might also facilitate the extinction of resistant strains. Overall, our study shows that the distribution of hospital sizes is a crucial factor for the spread of drug resistance
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
- …