5,938 research outputs found

    Linear dynamics of the solar convection zone: excitation of waves in unstably stratified shear flows

    Get PDF
    In this paper we report on the nonresonant conversion of convectively unstable linear gravity modes into acoustic oscillation modes in shear flows. The convectively unstable linear gravity modes can excite acoustic modes with similar wave-numbers. The frequencies of the excited oscillations may be qualitatively higher than the temporal variation scales of the source flow, while the frequency spectra of the generated oscillations should be intrinsically correlated to the velocity field of the source flow. We anticipate that this nonresonant phenomenon can significantly contribute to the production of sound waves in the solar convection zone.Comment: 8 pages. To appear in the proceedings of the conference "Waves in Dusty, Solar and Space Plasmas", Leuven, Belgium 21-26 May 200

    Farley-Buneman Instability in the Solar Chromosphere

    Get PDF
    The Farley-Buneman instability is studied in the partially ionized plasma of the solar chromosphere taking into account the finite magnetization of the ions and Coulomb collisions. We obtain the threshold value for the relative velocity between ions and electrons necessary for the instability to develop. It is shown that Coulomb collisions play a destabilizing role in the sense that they enable the instability even in the regions where the ion magnetization is greater than unity. By applying these results to chromospheric conditions, we show that the Farley-Buneman instability can not be responsible for the quasi-steady heating of the solar chromosphere. However, in the presence of strong cross-field currents it can produce small-scale, 0.13\sim 0.1-3 m, density irregularities in the solar chromosphere. These irregularities can cause scintillations of radio waves with similar wave lengths and provide a tool for remote chromospheric sensing

    Spatial magneto-seismology : effect of density stratification on the first harmonic amplitude profile of transversal coronal loop oscillations

    Get PDF
    Context. The new generation of extreme-ultraviolet (EUV) imagers onboard missions such as the Solar Dynamics Observatory (SDO)and Solar Orbiter (SO) will provide the most accurate spatial measurements of post-flare coronal loop oscillations yet. The amplitude profiles of these loop oscillations contain important information about plasma fine structure in the corona. Aims. We show that the position of the anti-nodes of the amplitude profile of the first harmonic of the standing fast kink wave of a coronal loop relate to the plasma density stratification of that loop. Methods. The MHD kink transversal waves of coronal loops are modelled both numerically and analytically. The numerical model implements the implicit finite element code pollux. Dispersion relations are derived and solved analytically. The results of the two methods are compared and verified. Results. Density stratification causes the anti-nodes of the first harmonic to shift towards the loop footpoints. The greater the density stratification, the larger the shift. The anti-node shift of the first harmonic of a semi-circular coronal loop with a density scale height H = 50 Mm and loop half length L = 100 Mm is approximately 5.6Mm. Shifts in the Mm range are measureable quantities providing valuable information about the subresolution structure of coronal loops. Conclusions. The measurement of the anti-node shift of the first harmonic of the standing fast kink wave of coronal loops is potentially a new tool in the field of solar magneto-seismology, providing a novel complementary method of probing plasma fine structure in the corona

    Magneto-seismology: effect of inhomogeneous magnetic field on transversal coronal loop oscillations

    Get PDF
    The extreme-ultraviolet (EUV) imagers onboard the planned Solar Dynamics Observatory (SDO) and Solar Orbiter (SO) will offer us the best chance yet of using observations of post-flare loop oscillations to probe the fine structure of the corona. Recently developed magnetohydrodynamic (MHD) wave theory has shown that the properties of loop oscillations depend on their plasma fine structure. Up to this point, many studies have concentrated solely on the effect of plasma density stratification on coronal loop oscillations. In this paper we develop MHD wave theory which models the effect of an inhomogeneous magnetic field on coronal loop oscillations. The results have the potential to be used in testing the efficacy of photospheric magnetic field extrapolations and have important implications regarding magneto-seismology of the corona

    Selective spatial damping of propagating kink wavesto resonant absorption

    Get PDF
    There is observational evidence of propagating kink waves driven by photospheric motions. These disturbances, interpreted as kink magnetohydrodynamic (MHD) waves are attenuated as they propagate upwards in the solar corona. In this paper we show that resonant absorption provides a simple explanation to the spatial damping of these waves. Kink MHD waves are studied using a cylindrical model of solar magnetic flux tubes which includes a non-uniform layer at the tube boundary. Assuming that the frequency is real and the longitudinal wavenumber complex, the damping length and damping per wavelength produced by resonant absorption are analytically calculated. The damping length of propagating kink waves due resonant absorption is a monotonically decreasing function of frequency. For kink waves with low frequencies the damping length is exactly inversely proportional to frequency and we denote this as the TGV relation. When moving to high frequencies the TGV relation continues to be an exceptionally good approximation of the actual dependency of the damping length on frequency. This dependency means that resonant absorption is selective as it favours low frequency waves and can efficiently remove high frequency waves from a broad band spectrum of kink waves. It is selective as the damping length is inversely proportional to frequency so that the damping becomes more severe with increasing frequency. This means that radial inhomogeneity can cause solar waveguides to be a natural low-pass filter for broadband disturbances. Hence kink wave trains travelling along, e.g., coronal loops, will have a greater proportion of the high frequency components dissipated lower down in the atmosphere. This could have important consequences with respect to the spatial distribution of wave heating in the solar atmospher

    Low-power micro-scale CMOS-compatible silicon sensor on a suspended membrane.

    Get PDF
    In this paper we describe a new, simple and cheap silicon device operating at high temperature at a very low power of a few mW. The essential part of the device is a nano-size conductive link 10-100 nm in size (the so-called antifuse) formed in between two poly-silicon electrodes separated by a thin SiO2 layer. The device can be utilized in chemical sensors or chemical micro-reactors requiring high temperature and very low power consumption e.g. in portable, battery operated systems. As a direct application, we mention a gas sensor (i.e. Pellistor) for hydrocarbons (butane, methane, propane, etc.) based on temperature changes due to the catalytic combustion of hydrocarbons. The power consumed by our device is at about 2% of the power consumed by conventional Pellistors

    Development of a recombinase polymerase amplification lateral flow assay for the detection of active Trypanosoma evansi infections

    Get PDF
    Author summary Neglected tropical diseases (NTDs) affecting humans and/or domestic animals severely impair the socio-economic development of endemic areas. One of these diseases, animal trypanosomosis, affects livestock and is caused by the parasites of the Trypanosoma genus. The most widespread causative agent of animal trypanosomosis is T. evansi, which is found in large parts of the world (Africa, Asia, South America, Middle East, and the Mediterranean). Proper control and treatment of the disease requires the availability of reliable and sensitive diagnostic tools. DNA-based detection techniques are powerful and versatile in the sense that they can be tailored to achieve a high specificity and usually allow the reliable detection of low amounts of parasite genetic material. However, many DNA-based methodologies (such as PCR) require trained staff and well-equipped laboratories, which is why the research community has actively investigated in developing amplification strategies that are simple, fast, cost-effective and are suitable for use in minimally equipped laboratories and field settings. In this paper, we describe the development of a diagnostic test under a dipstick format for the specific detection of T. evansi, based on a DNA amplification principle (Recombinase Polymerase Amplification aka RPA) that meets the above-mentioned criteria. Background Animal trypanosomosis caused by Trypanosoma evansi is known as "surra" and is a widespread neglected tropical disease affecting wild and domestic animals mainly in South America, the Middle East, North Africa and Asia. An essential necessity for T. evansi infection control is the availability of reliable and sensitive diagnostic tools. While DNA-based PCR detection techniques meet these criteria, most of them require well-trained and experienced users as well as a laboratory environment allowing correct protocol execution. As an alternative, we developed a recombinase polymerase amplification (RPA) test for Type A T. evansi. The technology uses an isothermal nucleic acid amplification approach that is simple, fast, cost-effective and is suitable for use in minimally equipped laboratories and even field settings. Methodology/Principle findings An RPA assay targeting the T. evansi RoTat1.2 VSG gene was designed for the DNA-based detection of T. evansi. Comparing post-amplification visualization by agarose gel electrophoresis and a lateral flow (LF) format reveals that the latter displays a higher sensitivity. The RPA-LF assay is specific for RoTat1.2-expressing strains of T. evansi as it does not detect the genomic DNA of other trypanosomatids. Finally, experimental mouse infection trials demonstrate that the T. evansi specific RPA-LF can be employed as a test-of-cure tool

    Alfven node-free vibrations of white dwarf in the model of solid star with toroidal magnetic field

    Full text link
    In the context of the white dwarf asteroseismology, we investigate vibrational properties of a non-convective solid star with an axisymmetric purely toroidal intrinsic magnetic field of two different shapes. Focus is laid on regime of node-free global Lorentz-force-driven vibrations about symmetry axis at which material displacements have one and the same form as those for nodeless spheroidal and torsional vibrations restored by Hooke's force of elastic shear stresses. Particular attention is given to the even-parity poloidal Alfven modes whose frequency spectra are computed in analytic form showing how the purely toroidal magnetic fields completely buried beneath the star surface can manifest itself in seismic vibrations of non-magnetic white dwarfs. The obtained spectral formulae are discussed in juxtaposition with those for Alfven modes in the solid star model with the poloidal, homogeneous internal and dipolar external, magnetic field whose inferences are relevant to Alfven vibrations in magnetic white dwarfs.Comment: Accepted for publication in Astrophysics & Space Scienc

    Bounds on the Magnetic Fields in the Radiative Zone of the Sun

    Get PDF
    We discuss bounds on the strength of the magnetic fields that could be buried in the radiative zone of the Sun. The field profiles and decay times are computed for all axisymmetric toroidal Ohmic decay eigenmodes with lifetimes exceeding the age of the Sun. The measurements of the solar oblateness yield a bound <~ 7 MG on the strength of the field. A comparable bound is expected to come from the analysis of the splitting of the solar oscillation frequencies. The theoretical analysis of the double diffusive instability also yields a similar bound. The oblateness measurements at their present level of sensitivity are therefore not expected to measure a toroidal field contribution.Comment: 15 pages, 6 figure
    corecore