263 research outputs found
Development and evaluation of a 3D printing protocol to produce zolpidem-containing printlets, as compounding preparation, by the pressurized-assisted microsyringes technique
Insomnia is a chronic disorder with a mean prevalence ranged from 6% to 15% worldwide. The usual pharmacologic treatment for insomnia has been benzodiazepines and barbiturates. More recently, z-drugs were introduced in the therapeutic arsenal to maximize benefits and minimize treatment damage. Zolpidem tartrate, whose primary indication is for sleep initiation problems, is conventionally used at a recommended dose of 5 mg for women as well as elderly patients (< 65 years-old) and 10 mg for non-elderly men. However, it was demonstrated that the dose of zolpidem should be adjusted according to the gender, age, condition of the patient and the presence of polypharmacy to decrease the occurrence of adverse events. Faced with the therapeutic limitations inherent to marketed products, magistral preparations offer medical and legal alternatives to mass treatment. The use of a semi-automatic technique, with standardized protocol, such as 3D printing should be advantageously implemented as an alternative to standard compounding procedures. In this work, the pressure-assisted microsyringes method was selected as it allows the tridimensional printing, and so the customization of the dose, by easily extruding a viscous semi-liquid material, called "slurry", through a syringe at room temperature. It has been demonstrated that this methodology allows obtaining printlets that responded to the zolpidem-containing tablets monograph of the US pharmacopoeia Edition 42. The compounding preparations proposed in this work therefore have the same criteria of requirements as a commercial form
Long-acting implantable dosage forms containing paliperidone palmitate obtained by 3D printing
peer reviewe
Proof of concept of a predictive model of drug release from long-acting implants obtained by fused-deposition modeling
peer reviewe
A consensus research agenda for optimising nasal drug delivery
Nasal drug delivery has specific challenges which are distinct from oral inhalation, alongside which it is often considered. The next generation of nasal products will be required to deliver new classes of molecule, e.g. vaccines, biologics and drugs with action in the brain or sinuses, to local and systemic therapeutic targets. Innovations and new tools/knowledge are required to design products to deliver these therapeutic agents to the right target at the right time in the right patients. We report the outcomes of an expert meeting convened to consider gaps in knowledge and unmet research needs in terms of (i) formulation and devices, (ii) meaningful product characterization and modeling, (iii) opportunities to modify absorption and clearance. Important research questions were identified in the areas of device and formulation innovation, critical quality attributes for different nasal products, development of nasal casts for drug deposition studies, improved experimental models, the use of simulations and nasal delivery in special populations. We offer these questions as a stimulus to research and suggest that they might be addressed most effectively by collaborative research endeavors
Feasibility study into the potential use of fused-deposition modeling to manufacture 3D-printed enteric capsules in compounding pharmacies
peer reviewe
Investigation of the parameters used in fused deposition modeling of poly(lactic acid) to optimize 3D printing sessions
peer reviewe
Simple approach for a self-healable and stiff polymer network from iminoboronate-based boroxine chemistry
peer reviewe
Correlation between adhesion strength and phase behaviour in solid-supported lipid membranes
Fundamental understanding of vesicle adhesion in the size range ≤ 200 nm is of major importance when addressing biologically relevant processes involving the presence of small vesicles like exosomes or endosomes. Using quartz crystal microbalance with dissipation monitoring, we investigate the correlation between vesicle deformation and eventual membrane rupture on surfaces with different adhesion levels, as well as their respective thermotropic phase transitions. In particular, phase transitions of solid-supported membranes on Au resemble the cooperative behaviour of lipid membrane transitions in bulk. In contrast, solid-supported membranes on SiO2 exhibit broadened ‘double-peak’ transitions, rendering a ‘decoupling’ effect during melting due to stronger interactions with SiO2. This paper provides a comprehensive view of the correlation between size, geometry and phase transitions observed in the layer of adsorbed lipid vesicles/membranes. It paves the way to explore structural changes on more complex biointerfaces by acoustic-based sensors
The Influence of Chitosan on the Oral Bioavailability of Acyclovir—a Comparative Bioavailability Study in Humans
- …
