1,094 research outputs found

    Sialylation of campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice

    Get PDF
    <p>Background: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.</p> <p>Methodology/Principal Findings: In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.</p> <p>Conclusions/Significance: These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS</p&gt

    Detection of inter-hemispheric functional connectivity in motor cortex with coherence analysis

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) is showing promise as an alternate method to fMRI for studying cortical function. Resting state studies in both methods are showing functional linkages. The strength of functional connections is typically quantified by the level of significance of the temporal synchrony between brain regions, termed resting-state functional connectivity. Coherence analysis of resting state allows for phase insensitive and frequency specific analysis. This paper provides a detailed method for undertaking fNIRS in combination with resting-state coherence analysis. We show that maps of inter-hemispheric resting-state functional connectivity between the motor cortices can be reliably generated, and the frequency responses (to 50 Hz) for both oxy- and deoxyhemoglobin. Frequencies of 0-0.1 Hz provide robust data as have been shown previously. Higher frequencies (up to 5 Hz) also exhibit high coherence. Deoxyhemoglobin also shows high coherence above 10Hz. Coherence is similar during both resting and task activated states. fNIRS allows for mapping cortical function and, in combination with coherence analysis, allows one to study variations in frequency response

    Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells

    Get PDF
    Immunocytochemical studies have shown that protocadherin-15 (PCDH15) and cadherin-23 (CDH23) are associated with tip links, structures thought to gate the mechanotransducer channels of hair cells in the sensory epithelia of the inner ear. The present report describes functional and structural analyses of hair cells from Pcdh15av3J (av3J), Pcdh15av6J (av6J) and Cdh23v2J (v2J) mice. The av3J and v2J mice carry point mutations that are predicted to introduce premature stop codons in the transcripts for Pcdh15 and Cdh23, respectively, and av6J mice have an in-frame deletion predicted to remove most of the 9th cadherin ectodomain from PCDH15. Severe disruption of hair-bundle morphology is observed throughout the early-postnatal cochlea in av3J/av3J and v2J/v2J mice. In contrast, only mild-to-moderate bundle disruption is evident in the av6J/av6J mice. Hair cells from av3J/av3J mice are unaffected by aminoglycosides and fail to load with [3H]-gentamicin or FM1-43, compounds that permeate the hair cell's mechanotransducer channels. In contrast, hair cells from av6J/av6J mice load with both FM1-43 and [3H]-gentamicin, and are aminoglycoside sensitive. Transducer currents can be recorded from hair cells of all three mutants but are reduced in amplitude in all mutants and have abnormal directional sensitivity in the av3J/av3J and v2J/v2J mutants. Scanning electron microscopy of early postnatal cochlear hair cells reveals tip-link like links in av6J/av6J mice, substantially reduced numbers of links in the av3J/av3J mice and virtually none in the v2J/v2J mice. Analysis of mature vestibular hair bundles reveals an absence of tip links in the av3J/av3J and v2J/v2J mice and a reduction in av6J/av6J mice. These results therefore provide genetic evidence consistent with PCDH15 and CDH23 being part of the tip-link complex and necessary for normal mechanotransduction

    Mechanical Stress Inference for Two Dimensional Cell Arrays

    Get PDF
    Many morphogenetic processes involve mechanical rearrangement of epithelial tissues that is driven by precisely regulated cytoskeletal forces and cell adhesion. The mechanical state of the cell and intercellular adhesion are not only the targets of regulation, but are themselves likely signals that coordinate developmental process. Yet, because it is difficult to directly measure mechanical stress {\it in vivo} on sub-cellular scale, little is understood about the role of mechanics of development. Here we present an alternative approach which takes advantage of the recent progress in live imaging of morphogenetic processes and uses computational analysis of high resolution images of epithelial tissues to infer relative magnitude of forces acting within and between cells. We model intracellular stress in terms of bulk pressure and interfacial tension, allowing these parameters to vary from cell to cell and from interface to interface. Assuming that epithelial cell layers are close to mechanical equilibrium, we use the observed geometry of the two dimensional cell array to infer interfacial tensions and intracellular pressures. Here we present the mathematical formulation of the proposed Mechanical Inverse method and apply it to the analysis of epithelial cell layers observed at the onset of ventral furrow formation in the {\it Drosophila} embryo and in the process of hair-cell determination in the avian cochlea. The analysis reveals mechanical anisotropy in the former process and mechanical heterogeneity, correlated with cell differentiation, in the latter process. The method opens a way for quantitative and detailed experimental tests of models of cell and tissue mechanics

    International variation in ethics committee requirements: comparisons across five Westernised nations

    Get PDF
    BACKGROUND: Ethics committees typically apply the common principles of autonomy, nonmaleficence, beneficence and justice to research proposals but with variable weighting and interpretation. This paper reports a comparison of ethical requirements in an international cross-cultural study and discusses their implications. DISCUSSION: The study was run concurrently in New Zealand, UK, Israel, Canada and USA and involved testing hypotheses about believability of testimonies regarding alleged child sexual abuse. Ethics committee requirements to conduct this study ranged from nil in Israel to considerable amendments designed to minimise participant harm in New Zealand. Assessment of minimal risk is a complex and unreliable estimation further compounded by insufficient information on probabilities of particular individuals suffering harm. Estimating potential benefits/ risks ratio and protecting participants' autonomy similarly are not straightforward exercises. SUMMARY: Safeguarding moral/humane principles should be balanced with promotion of ethical research which does not impede research posing minimal risk to participants. In ensuring that ethical standards are met and research has scientific merit, ethics committees have obligations to participants (to meet their rights and protect them from harm); to society (to ensure good quality research is conducted); and to researchers (to treat their proposals with just consideration and respect). To facilitate meeting all these obligations, the preferable focus should be promotion of ethical research, rather than the prevention of unethical research, which inevitably results in the impediment of researchers from doing their work. How the ethical principles should be applied and balanced requires further consideration

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE
    • …
    corecore