245 research outputs found

    Improved unitarity constraints in Two-Higgs-Doublet-Models

    Get PDF
    Two-Higgs-Doublet-Models (THDMs) are among the simplest extensions of the standard model and are intensively studied in the literature. Using on-shell parameters such as the masses of the additional scalars as input, corresponds often to large quartic couplings in the underlying Lagrangian. Therefore, it is important to check if these couplings are for instance in agreement with perturbative unitarity. The common approach for doing this check is to consider the two-particle scattering matrix of scalars in the large centre-of-mass energy limit where only point interactions contribute. We show that this is not always a valid approximation: the full calculation including all tree-level contributions at finite energy can lead to much more stringent constraints. We show how the allowed regions in the parameter space are affected. In particular, the light Higgs window with a second Higgs below 125 GeV completely closes for large values of the Z2Z_2 breaking parameter M12|M_{12}|. We also compare against the loop corrected constraints, which use also the large s\sqrt{s} approximation, and find that (effective) cubic couplings are often more important than radiative corrections.Comment: 8 pages, 6 figure

    Dirac Gauginos in Low Scale Supersymmetry Breaking

    Get PDF
    It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy -- with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry.Comment: 40 pages, 3 figures. Minor typos fixed; matches version in Nuclear Physics

    The Higgs mass in the CP violating MSSM, NMSSM, and beyond

    Get PDF
    We discuss the automatised calculation of the Higgs mass in renormalisable supersymmetric models with complex parameters at the two-loop level. Our setup is based on the public codes SARAH and SPheno, which can now compute the two-loop corrections to masses of all neutral scalars in such theories. The generic ansatz for these calculations and the handling of the `Goldstone Boson catastrophe' is described. It is shown that we find perfect agreement with other existing two-loop calculations performed in the DR-bar scheme. We also use the functionality to derive results for the MSSM and NMSSM not available before: the Higgs mass in the constrained version of the complex MSSM, and the impact of CP phases in the two-loop corrections beyond order alpha-strong alpha-top for the scale invariant NMSSM are briefly analysed.Comment: 19 pages, 14 figure

    Instanton induced Yukawa couplings from distant E3 and E(-1) instantons

    Full text link
    We calculate non-perturbative contributions to Yukawa couplings on D3-branes at orbifold singularities due to E3 and fractional E(-1) instantons which do not intersect the visible sector branes. While distant E3 instantons on bulk cycles typically contribute to Yukawa couplings, we find that distant fractional E(-1) can also give rise to new Yukawa couplings. However, fractional E(-1) instantons only induce Yukawa couplings if they are located at a singularity which shares a collapsed homologous two-cycle with the singularity supporting the visible sector. The non-perturbative contributions to Yukawa couplings exhibit a different flavour structure than the tree-level Yukawa couplings and, as a result, they can be sources of flavour violation. This is particularly relevant for schemes of moduli stabilisation which rely on superpotential contributions from E3 instantons, such as KKLT or the Large Volume Scenario. As a byproduct of our analysis, we shed some new light on the properties of annulus diagrams with matter field insertions in stringy instanton calculus.Comment: 41 pages, 2 figures; v2: references adde

    (O)Mega Split

    Get PDF
    We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale, as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on the supersymmetry scale, which we derive. On the other hand, we show that renormalisation group running of soft masses above the supersymmetry scale barely constrains the model - in stark contrast to Split Supersymmetry - and hence we can have a "Mega Split" spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, Fake Split Extended Supersymmetry, which enjoys similar properties.Comment: 33 pages, 7 figures, 1 tabl

    Cornering sgluons with four-top-quark events

    Full text link
    The existence of colour-octet scalar states, often dubbed sgluons, is predicted in many extensions of the Standard Model of particle physics, such as supersymmetric realisations featuring Dirac gauginos. Such states have a large pair-production rate at hadron colliders and mainly decay into pairs of jets and top quarks. Consequently, they represent a primary target for experimental searches for new resonances in the multijet and multitop channels at the Large Hadron Collider. Adopting a phenomenologically-motivated simplified model, we reinterpret the results of a recent experimental search for the four-top-quark Standard Model signal, from which we constrain the sgluon mass to be larger than about 1.06 TeV. We additionally consider how modifications of the existing four-top-quark studies could enhance our ability to unravel the presence of scalar octets in data.Comment: 8 pages, 4 figures. References added, matches published versio

    On the two-loop corrections to the Higgs masses in the NMSSM

    Full text link
    We discuss the impact of the two-loop corrections to the Higgs mass in the NMSSM beyond O(αS(αb+αt))O(\alpha_S(\alpha_b + \alpha_t)). For this purpose we use the combination of the public tools SARAH and SPheno to include all contributions stemming from superpotential parameters. We show that the corrections in the case of a heavy singlet are often MSSM-like and reduce the predicted mass of the SM-like state by about 1 GeV as long as λ\lambda is moderately large. For larger values of λ\lambda the additional corrections can increase the SM-like Higgs mass. If a light singlet is present the additional corrections become more important even for smaller values of λ\lambda and can even dominate the ones involving the strong interaction. In this context we point out that important effects are not reproduced quantitatively when only including O((αb+αt+ατ)2)O((\alpha_b+\alpha_t+\alpha_\tau)^2) corrections known from the MSSM.Comment: 23 pages, 11 figure

    Dirac Gauginos and the 125 GeV Higgs

    Get PDF
    We investigate the mass, production and branching ratios of a 125 GeV Higgs in models with Dirac gaugino masses. We give a discussion of naturalness, and describe how deviations from the Standard Model in the key Higgs search channels can be simply obtained. We then perform parameter scans using a SARAH package upgrade, which produces SPheno code that calculates all relevant quantities, including electroweak precision and flavour constraint data, to a level of accuracy previously impossible for this class of models. We study three different variations on the minimal Dirac gaugino extension of the (N)MSSM.Comment: 32 pages, 9 figure

    Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons

    Get PDF
    The calculation of the Higgs mass in general renormalisable field theories has been plagued by the so-called "Goldstone Boson Catastrophe", where light (would-be) Goldstone bosons give infra-red divergent loop integrals. In supersymmetric models, previous approaches included a workaround that ameliorated the problem for most, but not all, parameter space regions; while giving divergent results everywhere for non-supersymmetric models! We present an implementation of a general solution to the problem in the public code SARAH, along with new calculations of some necessary loop integrals and generic expressions. We discuss the validation of our code in the Standard Model, where we find remarkable agreement with the known results. We then show new applications in Split SUSY, the NMSSM, the Two-Higgs-Doublet Model, and the Georgi-Machacek model. In particular, we take some first steps to exploring where the habit of using tree-level mass relations in non-supersymmetric models breaks down, and show that the loop corrections usually become very large well before naive perturbativity bounds are reached.Comment: 45 pages, 12 figure

    Three- and Four-point correlators of excited bosonic twist fields

    Get PDF
    We compute three- and four-point correlation functions containing excited bosonic twist fields. Our results can be used to determine properties, such as lifetimes and production rates, of massive string excitations localised at D-brane intersections, which could be signatures of a low string scale even if the usual string resonances are inaccessible to the LHC.Comment: 42 pages, no figure
    corecore