2,509 research outputs found
Finite-Size Scaling at the Jamming Transition
We present an analysis of finite-size effects in jammed packings of N soft,
frictionless spheres at zero temperature. There is a 1/N correction to the
discrete jump in the contact number at the transition so that jammed packings
exist only above isostaticity. As a result, the canonical power-law scalings of
the contact number and elastic moduli break down at low pressure. These
quantities exhibit scaling collapse with a non-trivial scaling function,
demonstrating that the jamming transition can be considered a phase transition.
Scaling is achieved as a function of N in both 2 and 3 dimensions, indicating
an upper critical dimension of 2.Comment: 5 pages, 3 figure
Large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock
Large parallel ( 100 mV/m) and perpendicular ( 600 mV/m) electric
fields were measured in the Earth's bow shock by the vector electric field
experiment on the Polar satellite. These are the first reported direct
measurements of parallel electric fields in a collisionless shock. These fields
exist on spatial scales comparable to or less than the electron skin depth (a
few kilometers) and correspond to magnetic field-aligned potentials of tens of
volts and perpendicular potentials up to a kilovolt. The perpendicular fields
are amongst the largest ever measured in space, with energy densities of
of order 10%. The measured parallel electric field
implies that the electrons can be demagnetized, which may result in stochastic
(rather than coherent) electron heating
Space Shuttle orbiter entry heating and TPS response: STS-1 predictions and flight data
Aerothermodynamic development flight test data from the first orbital flight test of the Space Transportation System (STS) transmitted after entry blackout is given. Engineering predictions of boundary layer transition and numerical simulations of the orbiter flow field were confirmed. The data tended to substantiate preflight predictions of surface catalysis phenomena. The thermal response of the thermal protection system was as expected. The only exception is that internal free convection was found to be significant in limiting the peak temperature of the structure in areas which do not have internal insulation
The Fermi surface of CeCoIn5: dHvA
Measurements of the de Haas - van Alphen effect in the normal state of the
heavy Fermion superconductor CeCoIn5 have been carried out using a torque
cantilever at temperatures ranging from 20 to 500 mK and in fields up to 18
tesla. Angular dependent measurements of the extremal Fermi surface areas
reveal a more extreme two dimensional sheet than is found in either CeRhIn5 or
CeIrIn5. The effective masses of the measured frequencies range from 9 to 20
m*/m0.Comment: 4 pages, 2 figures, submitted to PRB Rapid
Polarization of Broad Absorption Line QSOs I. A Spectropolarimetric Atlas
We present a spectropolarimetric survey of 36 broad absorption line
quasi-stellar objects (BAL QSOs). The continuum, absorption trough, and
emission line polarization of BAL QSOs yield clues about their structure. We
confirm that BAL QSOs are in general more highly polarized than non-BAL QSOs,
consistent with a more equatorial viewing direction for the former than the
latter. We have identified two new highly-polarized QSOs in our sample
(1232+1325 and 1333+2840). The polarization rises weakly to the blue in most
objects, perhaps due to scattering and absorption by dust particles. We find
that a polarization increase in the BAL troughs is a general property of
polarized BAL QSOs, indicating an excess of scattered light relative to direct
light, and consistent with the unification of BAL QSOs and non-BAL QSOs. We
have also discovered evidence of resonantly scattered photons in the red wing
of the C IV broad emission lines of a few objects. In most cases, the broad
emission lines have lower polarization and a different position angle than the
continuum. The polarization characteristics of low-ionization BAL QSOs are
similar to those of high-ionization BAL QSOs, suggesting a similar BAL wind
geometry.Comment: 39 pages, 6 figures (20 .gif files), accepted for publication in The
Astrophysical Journal Supplement
Fermi Surface Measurements on the Low Carrier Density Ferromagnet Ca1-xLaxB6 and SrB6
Recently it has been discovered that weak ferromagnetism of a dilute 3D
electron gas develops on the energy scale of the Fermi temperature in some of
the hexaborides; that is, the Curie temperature approximately equals the Fermi
temperature. We report the results of de Haas-van Alphen experiments on two
concentrations of La-doped CaB6 as well as Ca-deficient Ca1-dB6 and
Sr-deficient Sr1-dB6. The results show that a Fermi surface exists in each case
and that there are significant electron-electron interactions in the low
density electron gas.Comment: 4 pages, 5 figures, submitted to PR
Euclidean Greedy Drawings of Trees
Greedy embedding (or drawing) is a simple and efficient strategy to route
messages in wireless sensor networks. For each source-destination pair of nodes
s, t in a greedy embedding there is always a neighbor u of s that is closer to
t according to some distance metric. The existence of greedy embeddings in the
Euclidean plane R^2 is known for certain graph classes such as 3-connected
planar graphs. We completely characterize the trees that admit a greedy
embedding in R^2. This answers a question by Angelini et al. (Graph Drawing
2009) and is a further step in characterizing the graphs that admit Euclidean
greedy embeddings.Comment: Expanded version of a paper to appear in the 21st European Symposium
on Algorithms (ESA 2013). 24 pages, 20 figure
Optical conductivity and superconductivity in LaSb
We have measured the resistivity, optical conductivity, and magnetic
susceptibility of LaSb to search for clues as to the cause of the
extraordinarily large linear magnetoresistance and to explore the properties of
the superconducting state. We find no evidence in the optical conductivity for
the formation of a charge density wave state above 20 K despite the highly
layered crystal structure. In addition, only small changes to the optical
reflectivity with magnetic field are observed indicating that the MR is due to
scattering rate, not charge density, variations with field. Although a
superconducting ground state was previously reported below a critical
temperature of 0.4 K, we observe, at ambient pressure, a fragile
superconducting transition with an onset at 2.5 K. In crystalline samples, we
find a high degree of variability with a minority of samples displaying a full
Meissner fraction below 0.2 K and fluctuations apparent up to 2.5 K. The
application of pressure stabilizes the superconducting transition and reduces
the anisotropy of the superconducting phase.Comment: 4 pages with 4 figure
- …